Treatment with antibiotics for pneumonia
A disease like pneumonia is a serious threat to health and even to a person's life. Antibiotics for pneumonia were and still are the saving agent.
Of course, medicine has made great strides. However, the main methods of treatment are still based on antibacterial drugs, and antibiotics are used for pneumonia. Advances in medicine in recent years are that new more effective and safe antibacterial agents have been developed.
Due to such funds, it is possible to quickly and easily stop the development of pneumonia and start treatment. This is very important, because inflammation of the lung is in the first place among the causes of death from inflammatory diseases.
Pneumonia - general information
Pneumonia is an inflammation of the lungs, which is of infectious origin. In pneumonia, inflammation, as a rule, affects the lower respiratory tract, bronchi, alveoli, bronchioles. Treatment of pneumonia with antibiotics is a common practice. Pneumonia in its origin can be fungal, viral and bacterial. The last type of pneumonia is most common, and we will discuss it exactly.
For the diagnosis in the laboratory, X-rays and sputum analysis data are used. It is treated pneumonia, as already mentioned, antibacterial drugs, that is antibiotics.Late diagnosis and untimely initiation of antibiotic use are very likely to lead to death. There are disappointing statistics. She says that out of 450 million patients - this is the total average number of diseases in one year - almost 4 million lethal cases. This means that pneumonia takes 4 million people a year.
The medicine is struggling with this disease, new drugs, treatment methods and preventive measures appear, but experts admit that it is still impossible to reduce the incidence rate. Only in Russia, the number of diseases is fixed at an annual value of 400 thousand - this is official data, but many experienced experts give another indicator - 1 million. Once again it is worth noting that timely treatment to the doctor is the key to success in treatment and a guarantee of recovery. After all, only the neglected forms lead to death.
Symptoms and Diagnosis
The onset of pneumonia can be determined promptly by the following indications:
- chills or fever with a sudden jump in temperature to 39-40 degrees;
- moist cough with abundant sputum discharge;
- manifested in dyspnea feeling that there is not enough air;
- palpable pain in the chest with a cough or deep breath.
Weakness, loss of strength, rapid fatigue, increased sweating, poor sleep, lack of appetite, intoxication are all calls for action to begin treatment of pneumonia. X-ray examination is carried out in all cases of suspicion of pneumonia - this is mandatory. Bronchoscopy can be performed with a lack of information. For example, wheezing in the lungs and spots on the X-ray images are signs by which one can make an unambiguous conclusion about the presence of pneumonia. Microbiology, however, will come to the rescue to establish the causative agent of the disease on the basis of data on the study of sputum.
Mandatory in the diagnosis is also the production of a blood test. On the basis of such an analysis, one can easily judge the presence of an inflammatory process and even the nature of its course. In those rare cases when X-rays do not provide complete information, resort to an additional, more modern and accurate method of investigation - computer magnetic resonance tomography of the lungs.
In the case of pediatric pneumonia, the symptoms do not differ from adults. The most common pneumonia manifests itself as dyspnea on the background of acute respiratory infections. For children, atypical forms of pneumonia are most typical - they require the use of antibiotics that are part of the macrolide group. Pediatric pneumonia gives complications more likely than adults, so treatment should be done only in the hospital.
Rules for prescribing antibiotics
The general rule of prescribing antibiotics for any diseases, even with bronchitis, is from simple to complex.That is, first the weakest drug is prescribed, for example ampicillin, and, in the absence of tangible shifts, the next one is stronger.And so on, until the desired effect is achieved. Efficacy is checked, usually based on a clinical blood test.This formula is also true for pneumonia, but everything depends on the causative agent of the disease. Conclusion on the ineffectiveness of this drug can be made after a minimum of 48 hours from the beginning of its use. Take into account the possibility of undesirable side effects of the drug. The reason for changing the remedy can also be its high toxicity, which limits the period of application.
Only by achieving a pronounced reduction in inflammatory processes, which should be judged by the analysis of blood, you can decide to cancel the course of antibiotics and start rehabilitation. Antibiotics are divided into groups that determine their activity against specific pathogens. Let us consider in detail the pathogens of the infection and the preparations corresponding to them.
Pneumococci. Against them are considered effective benzylpenicillin and aminopenicillin, in addition, according to many experts, these drugs are considered the gold standard. Haemophilus influenzae. Here aminopenicillins are suitable. Representatives of this group are amoxicillin and ampicillin. Against the hemophilic rod, fluoroquinolones are also effective.
Staphylococcus aureus. With this pathogen, oxacillin, aminopenicillins, cephalosporins are used. This is a fairly common pathogen, and in the fight against it, good results have been achieved.Pneumonia caused by chlamydia is treated with macrolides or drugs that are part of the tetracycline group. Well manifested themselves in the fight and fluoroquinolones. Legionella. The panacea against it is erythromycin. Fluoroquinolones, macrolides and rifampicin may be the drugs of choice in treatment correction.
Cephalosporins are used to treat pneumonia caused by the causative agent of Escherichia coli. This causative agent does not play a very definite role in the development of pneumonia. Therefore, the fight against it may not bring the desired results.
Treatment of the disease
Patients with pneumonia are hospitalized. Of course, the patient can and refuse hospitalization under his own responsibility, but this does not help to avoid risk of serious complications - suppuration in the lungs, respiratory failure, toxic shock, pleurisy.
.On what grounds can you judge the need for hospitalization:
- dizziness, increased respiration, decreased blood pressure, increased heart rate;
- lower body temperature less than nominal;
- the presence of inflammatory processes in other organs
- or simply if the home conditions do not allow full-time treatment at home (there may be different social indicators).
Treatment is carried out in a complex. The first component of the complex is medical treatment: the main treatment with antibiotics, drugs that prevent the development of inflammation, expectorants, inhalation.
The second component of complex treatment is physiotherapy. Its influence is important, and allows you to make treatment more effective, and reliably fix the result. Warming, electrophoresis, magnetotherapy, massage, therapeutic exercises for breathing - these are the components of physiotherapy. With all this it is useful to drink a lot of warm liquid, best of all medicinal broths on herbs.
The main and integral part of the treatment, as already mentioned, is the treatment with antibiotics. The choice of the treatment regimen is carried out individually for each patient on the basis of an accurate diagnosis, individual characteristics of the organism, the presence or absence of contraindications to the components of the drugs. The age, general condition of the organism is taken into account.
.The treatment regimen includes one or more specific antibiotic drugs, the frequency and duration of their administration, dosage. Most often, the scheme includes two drugs, thus providing the possibility of making adjustments based on a blood test to improve the quality of treatment.
Methods of treatment
These are the modern antibiotic drugs our medicine offers today:
- group of macrolides - clarithromycin, macropen, freomylid, azithromycin, sumamed, chemomycin, vilprafen;
- penicillin group - clarithromycin, macropen, freomylid, azithromycin, sumamed, chemomycin, vilprafen;
- cephalosporin group - cefazolin, suprax, rocefin, zinnate, fortum, cefixime, cephalexin, cefotaxime, ceftazidime, cloforan, cefepime, ceftriaxone;
- group of fluoroquinolones - levofloxacin, sparfloxacin.
Antibiotic therapy for pneumonia is an average of 8-9 days.
Drugs can be given in tablets, capsules or as injections. Of course, it is most effective to do injections, but it all depends on the patient's condition and the results of the research. Treatment can be accompanied by immunomodulatory therapy.
.Treatment of pneumonia in adults with antibiotics is usually accompanied by drugs that normalize the intestinal microflora, in order to avoid dysbiosis. It is very useful to appoint a patient multivitamins. Folk remedies can only complement antibiotics for the treatment of pneumonia. It is impossible to completely replace traditional methods with folk remedies.
respiratoria.ru
Antibacterial drugs for the treatment of pneumonia
The basis for the treatment of acute pneumonia is the appointment of antibacterial agents. Etiotropic treatment should satisfy the following conditions:
- treatment should be prescribed as soon as possible, before identification and identification of the pathogen;
- treatment should be carried out under clinical and bacteriological control with the definition of the pathogen and its sensitivity to antibiotics;
- antibacterial agents should be given in optimal doses and at such intervals to ensure the creation of a therapeutic concentration in the blood and lung tissue;
- treatment with antibacterial agents should continue until the disappearance of intoxication, normalization of body temperature (at least 3-4 days persistently normal temperature), physical data in the lungs, resorption of inflammatory infiltration in the lungs according to the X-ray research. The presence of clinical and radiological "residual" phenomena of pneumonia is not a basis for the continuation of antibiotic therapy. According to the Consensus on pneumonia of the Russian National Congress of Pulmonology (1995), the duration of antibiotic therapy is determined by the type of pathogen of pneumonia. Uncomplicated bacterial pneumonia is treated 3-4 days after normalization of body temperature (under condition normalization of the leukocyte formula) and 5 days if azithromycin is used (not prescribed for signs bacteremia). The duration of antibacterial therapy of mycoplasmal and chlamydial pneumonia is 10-14 days (5 days if azithromycin is used). Legionellosis pneumonia is treated with antilegionellar drugs for 14 days (21 days in patients with immunodeficiency states).
- if there is no effect on the antibiotic for 2-3 days, it is changed, in case of severe pneumonia, antibiotics are combined;
- unacceptable uncontrolled use of antibacterial agents, as this increases the virulence of the pathogens of infection and forms that are resistant to drugs;
- with prolonged use of antibiotics in the body may develop deficiency of B vitamins as a result of a violation of their synthesis in the intestine, which requires correction of the vitamin imbalance by the addition of appropriate vitamins; it is necessary to diagnose candidomycosis and intestinal dysbacteriosis in time, which can develop in treatment antibiotics;
- in the course of treatment, it is advisable to monitor the indices of the immune status, since the treatment with antibiotics can cause depression of the immune system, which contributes to the long existence of inflammatory process.
Criteria for the effectiveness of antibiotic therapy
Criteria for the effectiveness of antibiotic therapy are primarily clinical signs: a decrease in body temperature, a decrease in intoxication, improvement of the general condition, normalization of the leukocyte formula, reduction of the amount of pus in the sputum, positive dynamics of auscultatory and radiological data. Efficiency is estimated after 24-72 hours. Treatment does not change if there is no impairment.
Fever and leukocytosis may persist for 2-4 days, physical data - more than a week, radiographic signs of infiltration - 2-4 weeks from the onset of the disease. X-ray data often deteriorate during the initial treatment period, which is a serious predictor of patients with severe disease.
Among the antibacterial agents used as etiotropic in acute pneumonia, we can distinguish:
- penicillins;
- cephalosporins;
- monobactams;
- carbapenems;
- aminoglycosides;
- tetracyclines;
- macrolides;
- levomycetin;
- lincosamines;
- anamycin;
- polypeptides;
- fuzidine;
- novobiocin;
- phosphomycin;
- quinolones;
- nitrofurans;
- imidazoles (metronidazole);
- phytoncides;
- sulfonamides.
Antibacterial drugs for the treatment of acute pneumonia
Beta-lactam antibiotics
Group of penicillins
The mechanism of action of penicillins is to suppress the biosynthesis of the peptidoglycan of the cell membrane, which protects the bacteria from the surrounding space. The beta-lactam antibiotic fragment serves as a structural analog of alanyl aniline, a component of murano acid that cross-links with peptide chains in the peptidoglycan layer. Violation of the synthesis of cell membranes leads to the inability of the cell to resist the osmotic gradient between the cell and the environment, so the microbial cell swells and breaks. Penicillins have a bactericidal effect only on multiplying microorganisms, because in resting, no new cell membranes are built. The main protection of bacteria from penicillins is the production of the enzyme beta-lactamase, which opens the beta-lactam ring and the inactivating antibiotic.
Classification of beta-lactamases depending on their effect on antibiotics (Richmond, Sykes)
- I-class β-lactamase, cleavage of cephalosporins
- II-class β-lactamase, cleavage penicillins
- II-class β-lactamase, splitting various broad-spectrum antibiotics
- lV-class
- V-class β-lactamase, cleavage of isoxazolylpenicillins (oxacillin)
In 1940 Abraham and Chain found in E. coli, an enzyme that breaks penicillin. Since that time, a large number of enzymes have been described that cleave the beta-lactam ring of penicillin and cephalosporins. They are called beta-lactamase. This is a more correct name than penicillinase. β-Lactamases differ in molecular weight, isoelectric properties, sequence of amino acids, molecular structure, relationships with chromosomes and plasmids. The harmlessness of penicillins for humans is due to the fact that human cell membranes differ in structure and are not exposed to the action of the drug.
The first generation of penicillins (natural, natural penicillins)
Spectrum of action: Gram-positive bacteria (staphylococcus aureus, streptococcus, pneumococcus, anthrax, gangrene, diphtheria, lerella); Gram-negative bacteria (meningococci, gonococci, proteus, spirochaetes, leptospira).
Resistant to the action of natural penicillins: Gram-negative bacteria (enterobacteria, pertussis, Pseudomonas aeruginosa, Klebsiella, hemophilic wand, legionella, as well as staphylococci that produce the enzyme beta-lactamase, brucellosis, tularemia, plague, cholera), tuberculosis sticks.
Benzylpenicillin sodium salt is available in vials of 25, 00 ED, 50, 00 ED 0, 00 ED. The average daily dose is, 0, 00 units (by, 0, 00 every 4 hours). The maximum daily dose is 4, 0, 00 ED or more. The drug is administered intramuscularly, intravenously, intraarterially.
Benzylpenicillin potassium salt - the form of release and dosage are the same, the drug can not be administered intravenously and endolumbally.
Benzylpenicillin novocaine salt (novocillin) - the form of release is the same. The drug is administered only intramuscularly, has an extended action, can be administered 4 times a day for 1 million units.
Phenoxymethylpenicillin - tablets at 0.25 g. It is applied inside (not destroyed by gastric juice) 6 times a day. The average daily dose is 1-2 g, the maximum daily dose is 3 g or more.
The second generation of penicillins (semisynthetic penicillin-resistant anti-staphylococcal antibiotics)
The second generation of penicillins was obtained by adding to the 6-aminopenicillanic acid an acyl side chain. Some staphylococci produce an enzyme β-lactamase, which interacts with the β-lactam ring of penicillins and opens it, which leads to the morning antibacterial activity of the drug. The presence in the preparations of the second generation of the side acyl chain protects the beta-lactam ring of the antibiotic from the action of beta-lactamase bacteria. Therefore, second-generation drugs are primarily intended for the treatment of patients with penicillinase-producing staphylococcus infection. These antibiotics are also active against other bacteria in which penicillin is effective, but it is important to know, that benzylpenicillin in these cases is much more effective (more than 20 times with pneumococcal pneumonia). In this regard, with a mixed infection, it is necessary to prescribe benzylpenicillin and a drug resistant to β-lactamase. To penicillins of the second generation are resistant pathogens resistant to the action of penicillin. Indications for the appointment of penicillins of this generation are pneumonia and other infectious diseases of staphylococcal etiology.
Oxacillin (prostaflin, resistor, stapenor, bristopen, bactoacyl) - is available in vials of 0.25 and 0.5 g, as well as in tablets and capsules of 0.25 and 0.5 g. It is used intravenously, intramuscularly, orally every 4-6 hours. The average daily dose for pneumonia is 6 g. The highest daily dose is 18 g.
Dikloxacillin (dinapen, dicill) - an antibiotic, close to oxacillin, containing in its molecule 2 chlorine atoms, penetrates well into the cell. It is used intravenously, intramuscularly, inside every 4 hours. The average daily therapeutic dose is 2 g, the maximum daily dose is 6 g.
Cloxacillin (tegopen) is a drug close to dicloxacillin, but contains one chlorine atom. It is used intravenously, intramuscularly, inside every 4 hours. The average daily therapeutic dose is 4 g, the maximum daily dose is 6 g.
Flukloxacillin - an antibiotic, close to dicloxacillin, contains in its molecule one atom of chlorine and fluorine. It is applied intravenously, intramuscularly every 4-6 h, the average daily therapeutic dose is 4-8 g, the maximum daily dose is 18 g.
Cloxacillin and flucloxacillin, in comparison with oxacillin, produce a higher concentration in the serum. The ratio of blood concentrations after the administration of high doses of oxacillin, cloxacillin, dicloxacillin into the vein is 1: 1.27: 3.32
Dicloxacillin and oxacillin are metabolized predominantly in the liver, so they are more preferred for use in renal failure.
Nafcillin (nafzil, unipen) - is administered intravenously, intramuscularly every 4-6 h. The average daily dose is 6 g. The highest daily dose is 12 g.
The third generation of penicillins is a semi-synthetic penicillin with a broad spectrum of action
Penicillins of the third generation actively suppress Gram-negative bacteria. With regard to non-positive bacteria, their activity is lower than that of benzylpenicillin. but somewhat higher than that of the second generation penicillins. The exception is staphylococcus, producing beta-lactamase, for which penicillin of a wide spectrum does not work.
Ampicillin (pentrexil, omnipen) - is available in tablets, capsules of 0.25 g and in bottles of 0.25 and 0.5 g. It is administered intramuscularly, intravenously every 4-6 hours. The average daily dose of the drug is 4-6 g. The highest daily dose is 12 g. Ampicillin is resistant to Pseudomonas aeruginosa, penicillinase-forming staphylococci and indol-positive protease strains.
Ampicillin penetrates well into the bile, sinuses of the nose and accumulates in the urine, its concentrations in the sputum and lung tissue are low. The drug is most indicated for urogenital infections, and it does not have a nephrotoxic effect. However, in renal failure, the dose of ampicillin is recommended to reduce or increase the intervals between drug administrations. Ampicillins in optimal doses are also effective for pneumonia, but the duration of treatment is 5-10 days or more.
Cyclacillin (cyclopen) is a structural analogue of ampicillin. Assigned inside every 6 hours. The average daily dose of the drug is 1-2 g.
Pivampticillin - pivaloyloxymethyl ester of ampicillin - is hydrolyzed by nonspecific esterases in the blood and intestines to ampicillin. The drug is absorbed from the intestine better than ampicillin. It is administered internally in the same doses as ampicillin.
Bacampicillin (penglab, spectrobide) refers to the precursors that release ampicillin in the body. Assigned inside every 6-8 hours. The average daily dose is 2.4-3.2 g.
Amoxicillin - is an active metabolite of ampicillin, taken internally every 8 hours. The average daily dose is 1.5-3 g. The preparation in comparison with ampicillin is easier absorbed in the intestine and administered at the same dose creates a doubled concentration in blood, its activity against sensitive bacteria is 5-7 times higher, it exceeds the degree of penetration into the lung tissue ampicillin.
Augmentin - a combination of amoxicillin and clavulanic acid.
Clavulanic acid is a β-lactam derivative produced by Streptomyces clavuligerus. Clavulanic acid binds (inhibits) β-lactamase (penicillinase) and, thus, competitively protects penicillin, potentiating its action. Amoxicillin, potentiated with clavulanic acid, is suitable for the treatment of respiratory and urinary infections pathways caused by β-lactamase producing microorganisms, as well as in the case of an infection resistant to amoxicillin.
Produced in tablets, one tablet contains 250 mg of amoxicillin and 125 mg of clavulanic acid. It is prescribed for 1-2 tablets 3 times a day (every 8 hours).
Unazine is a combination of sodium sulbactam and ampicillin in the ratio:. It is used for intramuscular, intravenous injection. It is produced in 10 ml vials containing 0.75 g of substance (0.25 g of sulbactam and 0.5 g of ampicillin); in vials of 20 ml, containing 1.5 g of substance (0.5 g of sulbactam and 1 g of ampicillin); in vials of 20 ml with 3 g of substance (1 g of sulbactam and 2 g ampicillin). Sulbactam irreversibly suppresses the majority of β-lactamases responsible for the resistance of many bacterial species to penicillins and cephalosporins.
Sulbactam prevents the destruction of ampicillin by resistant microorganisms and has a pronounced synergism when administered with it. Sulbactam also inactivates the penicillin-binding proteins of bacteria such as Staph. aureus, E. coli, P. mirabilis, Acinetobacter, N. gonorrheae, H. influenzae, Klebsiella, which leads to a sharp increase in the antibacterial activity of ampicillin. The bactericidal component of the combination is ampicillin. Spectrum of the drug: staphylococci, including penicillinase-producing), pneumococcus, enterococcus, individual types of streptococci, hemophilic rod, anaerobes, E. coli, Klebsiella, enterobacter, Neisseria. The drug is diluted with water for injection or 5% glucose, injected slowly intravenously for 3 minutes or drip for 15-30 minutes. The daily dose of unazine is from 1.5 to 12 g for 3-4 injections (every 6-8 hours). The maximum daily dose is 12 g, which is equivalent to 4 g of sulbactam and 8 g of ampicillin.
Ampiox - a combination of ampicillin and oxacillin (:), combines the spectra of the action of both antibiotics. Produced in tablets, capsules C for oral intake of 0.25 g and in vials of 0.1, 0.2 and 0.5 g. Assigned inside, intravenously, intramuscularly every 6 hours. The average daily dose is 2-4 g. The maximum daily dose is 8 g.
The fourth generation of penicillins (carboxypenicillins)
The spectrum of action of penicillins of the fourth generation is the same as that of ampicillin, but with the additional property of destroying the Pseudomonas aeruginosa, pseudomonas and indolpositive proteas. The remaining microorganisms are weaker than ampicillin.
Carbenicillin (pyopen) - the spectrum of action: the same non-positive bacteria that are sensitive to penicillin, and Gram-negative bacteria, sensitive to ampicillin, in addition, the drug acts on Pseudomonas aeruginosa and Proteus. Carbenicillin is resistant to: penicillinase-producing staphylococci, causative agents of gas gangrene, tetanus, protozoa, spirochetes, fungi, rickettsia.
It is available in 1-g. Bottles. It is administered intravenously, intramuscularly every 6 hours. The average daily dose is 20 g intravenously, the maximum daily dose is 30 g. The average daily dose intramuscularly - 4 g, the highest daily dose - 8 g.
Carindacillin - carbenicillin indanyle ester, applied internally by 0.5 g 4 times a day. After absorption from the intestine it quickly hydrolyses to carbenicillin and indole.
Carpencilin phenyl ester of carbenicillin, administered orally 0.5 g 3 times a day, in severe cases, the daily dose rises to 3 g. Effective in pneumonia and urinary tract infections.
Ticarcillin (ticar) - is similar to carbenicillin, but 4 times more active against Pseudomonas aeruginosa. It is administered intravenously and intramuscularly. Intravenously administered every 4-6 hours, the average daily dose is 200-300 mg / kg, the maximum daily dose is 24 g. Intramuscularly injected every 6-8 hours, the average daily dose is 50-100 mg / kg, the maximum daily dose - 8 g. Ticarcillin is destroyed by beta-lactamases produced by Pseudomonas aeruginosa, hemophilic, Escherichia coli, proteus, Maracella (Neisseria). The spectrum of action of ticarcillin increases with a combination of ticarcillin and clavulanic acid (timentin). Timentin is highly effective against β-lactamase-producing and beta-lactamase-negative strains of non-negative bacteria.
The fifth generation of penicillins - ureido- and piperazinopenicillins
In ureidopenicillins, a side chain with a urea residue is attached to the ampicillin molecule. Ureidopenicillins penetrate the walls of bacteria, suppress their synthesis, but are destroyed by β-lactamases. The drugs have a bactericidal action and are especially effective against Pseudomonas aeruginosa (8 times more active than carbenicillin).
Azlotsimin (azlin, secular) - a bactericidal antibiotic, is available in 0.5, 1, 2 and 5 g vials, is administered intravenously in the form of a 10% solution. It dissolves in distilled water for injection: 0.5 g dissolves in 5 ml, 1 g in 10 ml, 2 g in 20 ml, 5 g in 50 ml, is intravenously injected slowly or intravenously drip. 10% glucose can be used as the solvent.
The spectrum of the drug: gram-positive flora (pneumococcus, streptococcus, staphylococcus, enterococcus, corynebacteria, clostridia), Gram-negative flora (pseudomonas, Klebsiella, enterobacter, E. coli, Salmonella, Shigella, Pseudomonas aeruginosa, Neisseria, Proteus, hemophilic rod).
The average daily dose is from 8 g (4 times 2 grams) to 15, (3 times 5 grams each). The maximum daily dose is from 20 g (4 times 5 g) to 24 g.
Mesocillin - in comparison with azlocillin less active against Pseudomonas aeruginosa, but more active against normal Gram-negative bacteria. It is administered intravenously every 4-6 hours, intramuscularly every 6 hours. The average daily dose intravenously is 12-I6 g, the maximum daily dose is 24 g. The average daily dose intramuscularly is 6-8 g, the maximum daily dose is 24 g.
Piperacillin (piprazyl) - has a piperazine grouping in the structure and refers to piperazinopenicillins. The spectrum of action is close to carbenicillin, it is active against Pseudomonas aeruginosae, Klebsiellae, Enterobacter, H.influenzae, Neisseriae, Pseudomonas aeruginosa. β-lactamases produced by S. aureus destroy piperacillin. Piperacillin is administered intravenously every 4 to 6 hours, with an average daily therapeutic dose of 12-16 g, a maximum daily dose of 24 g. Intramuscularly the drug is injected every 6-12 hours, with an average daily therapeutic dose of 6-8 g, the maximum daily i dose - 24 g.
It is reported on the release of a combined preparation of piperacillin with a beta-lactamase inhibitor tazobactam, which is most successfully used in the treatment of purulent abdominal lesions.
The sixth generation of penicillins - amidipenicillin and tetracycline
Penicillins of the sixth generation have a wide spectrum of action, but are especially active against gram-negative bacteria, including those resistant to ampicillin.
Amdinotsillin (coactin) - is administered intravenously, intramuscularly at intervals of 4-6 hours. The average daily dose of the drug is 40-60 mg / kg.
Temocillin is a semisynthetic beta-lactam antibiotic. The most effective against enterobacteria, hemophilic rod, gonococcus. To temotsillinu are resistant P. aeruginosae and B. fragilis. Resistant to the action of most β-lactamases. When administered intravenously, 1-2 g every 12 hours.
The drug in the body is not metabolized, in the unchanged form is excreted by the kidneys. It often changes with gram-negative sepsis and urinary infection.
All penicillins can cause allergic reactions: bronchospasm, Klinke edema, hives, itching rashes, anaphylactic shock.
Drugs used inside, can cause dyspeptic phenomena, pseudomembranous colitis, intestinal dysbacteriosis.
Group of cephalosporins
Preparations of the group cephalosporins are based on 7-aminocephalosporinic acid, the spectrum of antimicrobial effects is wide, now they are increasingly considered as a drug of choice. Antibiotics of this group were first obtained from a cephalosporium fungus isolated from seawater taken in Sardinia near the wastewater discharge site.
The mechanism of action of cephalosporins is close to the mechanism of action of penicillins, since both groups of antibiotics contain β-lactam ring: disruption of cell wall synthesis of fissile microorganisms due to acetylation of membrane transpeptidases. Cephalosporins have a bactericidal effect. The spectrum of cephalosporins is wide: gram-positive and non-negative microorganisms (streptococci, staphylococci, including penicillinase-producing, pneumococci, meningococci, gonococcus, diphtheria and anthrax bacillus, causative agents of gas gangrene, tetanus, treponema, borellia, a number of Escherichia coli strains, Shigella, Salmonella, Klebsiella, certain species protea). The bactericidal effect of cephalosporins is enhanced in an alkaline environment.
Classification of cephalosporins used parenterally
1st generation |
2nd generation |
3rd generation |
IV generation |
Cefazolin (kefzol) Cephalothin (keflin) Cefradine Cephaloridine (chains) Cefapyrine (cefadil) Cefatón Cephzedon Cefadroxil (duracef) |
Cefuroxime sodium (ketoceph) Cefuroxime-acoetyl (zinnate) Cefamandol Tsefanid (preceph) Tsefonitsid (monocid) Cefmenoxime |
Cefotaxime sodium (claforan) Cefoperazone (cefobide) Cefsulodin (cefomonide) Cefduaperase Ceftazidime (fortune) Tseftrksson (longacef) Ceftieoxm (cefizone) Cefazidime (Modified) Ceflamizol |
Cephazaflur Tsefpyrom (kaiten) Cefemetazole Cefotetan Cefoxytin Cefsulodin (cefomonide) Moxalactam (latamoxef) |
High activity against gram-positive bacteria |
High activity against Gram-negative bacteria |
High activity against Pseudomonas aeruginosa |
High activity against bacteroides and other anaerobes |
Some new cephalosporins are effective against mycoplasmas, Pseudomonas aeruginosa. They do not act on mushrooms, rickettsia, tubercle bacilli, protozoa.
Cephalosporins are resistant to penicillinase, although many of them are destroyed by cephalosporinase beta-lactamase, produced in contrast to penicillinase is not gram-positive, but individual non-negative pathogens).
Cephalosporins used parenterally
The first generation of cephalosporins
Cephalosporins of the first generation have a high activity against gram-positive cocci, including golden and coagulase-negative staphylococci, beta-hemolytic streptococcus, pneumococcus, green streptococcus. Cephalosporins of the first generation are resistant to the action of staphylococcal beta-lactamase, but are hydrolyzed by β-lactamase of gram-negative bacteria, in connection with which the preparations of this group are not very active against gram-negative cerebral flora (Escherichia coli, Klebsiella, Proteus and other).
Cephalosporins of the first generation penetrate well into all tissues, easily pass through the placenta, are found in high concentrations in the kidneys, pleural, peritoneal and synovial exudates, in smaller amounts in the prostate gland and bronchial secretion and practically do not penetrate the blood-brain barrier;
Cefoloridine (chainin, loridine) - is available in vials of 0.25, 0.5 and 1 g. It is administered intramuscularly, intravenously every 6 hours. The average daily dose is 1-2 g, the maximum daily dose is 6 g or more.
Cepaeolin (kefzol, cefamezin, acef) - is available in vials of 0.25, 0.5, 1, 2 and 4 g, is administered intravenously, intramuscularly at intervals of 6-8 hours. The average daily dose is 3-4 g, the maximum daily dose
Cephalothin (keflin, zeffin) - is available in 0.5, 1 and 2 g. Bottles. It is administered intramuscularly, intravenously at intervals of 4-6 hours. The average daily dose is 4-6 g, the maximum daily dose is 12 g.
Tsefapirin (cefadil) - is administered intravenously, intramuscularly every 6 hours. The average daily dose of the drug is 2-4 g, the maximum daily dose - 6 g or more.
The second generation of cephalosporins
Cephalosporins of the second generation have a predominantly high activity against Gram-negative bacteria (Escherichia coli, Klebsiella, Proteus, Enterobacter, Hemophilus rods, etc.), as well as gonococci, Neisseria. Drugs of this group are resistant to several or all of the resulting beta-lactamases and to several chromosomal beta-lactamases produced by gram-negative bacteria. Some cephalosporins of the second generation are resistant to the action of beta-lactamases and other bacteria.
Cefamandol (mandol) - is available in vials of 0.25; 0.5; 1.0 g, is administered intravenously, intramuscularly at intervals of 6 hours. The average daily dose is 2-4 g, the maximum daily dose is 6 g or more.
Tsefanid (preceph) - is administered intravenously, intramuscularly at intervals of 12 h. The average daily dose is 1 g, the maximum daily dose is 2 g.
Cefuroxime sodium (ketocef) - is available in vials containing 0.75 g and 1.5 g of dry matter. It is administered intramuscularly or intravenously after dilution with the applied solvent at intervals of 6-8 hours. The average daily dose is 6 g, the maximum is 9 g.
Tsefonitsid (monitsid) - used intravenously, intramuscularly once a day in a dose of 2 g.
The third generation of cephalosporins
Preparations of the third generation have a large Gram-negative activity, i.e. highly active against indolpositive strains of the protein, Pseudomonas aeruginosa, bacteroides (anaerobes, which play an important role in the development of aspiration pneumonia, wound infections, osteomyelitis), but are inactive for coccal infections, in particular staphylococcal and enterococcal. Highly resistant to the action of β-lactamases.
Cefotaxime (klaforan) - is available in 1 g vials, is administered intravenously, intramuscularly at intervals of 6-8 h. The average daily dose is 4 g, the maximum daily dose is 12 g.
Ceftriaxone (longatef) - used intravenously, intramuscularly at intervals of 24 h. The average daily dose is 2 g, the maximum is 4 g. Sometimes it is applied at intervals of 12 hours.
Ceftizoxime (cefizone, epocelin) - is available in 0.5 and 1 g vials, administered at intervals of 8 hours. The average daily dose is 4 g, the maximum daily dose is 9-12 g. Epocelin on the recommendation of the company producing it (Japan) is used in a daily dose of 0.5-2 g in 2-4 injections, in severe cases - up to 4 g per day.
Cefadizim (mod.) Is a broad-spectrum preparation due to the presence in the cephalosporin nucleus of the iminomethoxy and aminothiazole group and the dihydrotiazine ring. Effective against non-positive and gram-negative microorganisms, including both aerobes and anaerobes (Staphylococcus aureus, pneumococcus, streptococcus, Neisseria, Escherichia coli, Proteus, Salmonella, Haemophilus sticks). It is resistant to the action of most beta-lactamases, is not metabolized, is excreted mainly through the kidneys, it is recommended for use in urology and pulmonology. Modivid significantly stimulates the immune system, increases the number of T-lymphocytes-helleras, as well as phagocytosis. The drug is ineffective against pseudomonas, mycoplasmas, chlamydia.
The drug is administered intravenously or intramuscularly 2 times a day in a daily dose of 2-4 g.
Cefoperazone (cefobide) - is administered intravenously, intramuscularly every 8-12 hours, the average daily dose is 2-4 g, the maximum daily dose is 8 g.
Ceftazidime (kefadim, fortum) - available in ampoules of 0.25, 0.5, 1 and 2 g. It dissolves in water for injection. It is administered intravenously, intramuscularly at intervals of 8-12 hours. You can appoint 1 g of the drug every 8-12 hours. The average daily dose is 2 g, the maximum daily dose is -6 g.
Ceftazidime (fortum) is well combined in one injection with metrogil: 500 mg of Fortum in 1.5 ml of water for injection + 100 ml of 0.5% solution (500 mg) of metrogyl.
The fourth generation of cephalosporins
Preparations of the fourth generation are resistant to the action of β-lactamases, characterized by a wide spectrum of antimicrobial action (Gram-positive bacteria, non-negative bacteria, bacteroides), as well as anti-pseudomonas activity, but are resistant to them enterococci.
Moxalactom (moksam, latamokcef) - has a high activity against most Gram-positive and Gram-negative aerobes, anaerobes, Klebsiella, Escherichia coli, Pseudomonas aeruginosa, moderately active against Staphylococcus aureus. It is used intravenously, intramuscularly every 8 hours, the average daily dose of 2 g, the maximum daily dose of 12 g. Possible side effects are diarrhea, hypoprothrombinemia.
Cefoxytin (mefoksin) - is active mainly against bacteroids and bacteria close to them. In relation to non-positive and Gram-negative microorganisms is less active. Apply most often with anaerobic infection intramuscularly or intravenously every 6-8 hours for 1-2 g.
Cefotetan - is quite active against gram-positive and gram-negative microbes, is inactive against enterococci. It is used intravenously, intramuscularly 2 g 2 times a day, the highest daily dose is 6 g.
Tsefpyrom (kaiten) - is characterized by a well-balanced activity in both gram-positive and gram-negative microorganisms. Tsefpyrom is the only one of cephalosporin antibiotics, which possess significant activity against enterococci. The drug is significantly superior in activity to all the third generation cephalosporins with respect to staphylococci, enterobacteria, klebsiella, Escherichia, comparable with ceftazidime by activity against Pseudomonas aeruginosa, has a high activity against hemophilic sticks. Cephpir is highly resistant to major beta-lactamases, including broad-spectrum plasmid β-lactamases, inactivating cefazidime, cefotaxime, ceftriaxone and other third generation cephalosporins.
Tsefpirom is used for severe and extremely severe infections of various locations in patients in departments intensive care and resuscitation, with infectious and inflammatory processes that developed against neutropenia and immunosuppression. with septicemia, severe infections of the bronchopulmonary system and urinary tract.
The drug is used only intravenously struino or drip.
The contents of the vial (1 or 2 g of cefpyrom) are dissolved respectively into 10 or 20 ml of water for injection and the resulting solution is injected into the vein for 3-5 minutes. The drip introduction to the vein is carried out as follows: the contents of the vial (1 or 2 g of cefpyrom) dissolved in 100 ml of isotonic sodium chloride solution or 5% glucose solution and injected dropwise into 30 minutes.
Drug tolerance is good, however, in rare cases, allergic reactions, skin rashes, diarrhea, headache, drug fever, pseudomembranous colitis are possible.
Oral cephalosporins of the first generation
Cefalexin (chainex, ceflex, oraccef) - is available in capsules of 0.25 g, applied internally every 6 hours. The average daily dose is 1-2 g, the maximum daily dose is 4 g.
Cefradine (anspora, velotsef) - is administered internally at intervals of 6 h (according to some data - 12 h). The average daily dose is 2 g, the maximum daily dose is 4 g.
Cefadroxil (duracef) - is available in capsules of, g, is administered orally at intervals of 12 hours. The average daily dose is 2 g, the maximum daily dose is 4 g.
Oral cephalosporins of the second generation
Cefaclor (tseklor, panorel) - is available in capsules of 0.5 g, applied internally at intervals of 6-8 hours. For pneumonia, 1 capsule is given 3 times a day, in severe cases - 2 capsules 3 times a day. The average daily dose of the drug is 2 g, the maximum daily dose is 4 g.
Cefuroxime-aksetil (zinnat) - is available in tablets at 0.125; 0.25 and 0.5 g. It is applied to 0.25-0.5 g 2 times a day. Cefuroxime-axetil is a prodrug form, which after absorption is converted into an active cefuroxime.
Lorakarbef - applied inside of 0.4 g 2 times a day.
Oral cephalosporins of the third generation
Cefsulodin (monaspora, cefomonid) - applied internally at intervals of 6-12 hours. The average daily dose is 2 g, the maximum daily dose is 6 g.
Ceftibuten - applied inside of 0.4 g 2 times a day. Has a pronounced activity against gram-negative bacteria and is resistant to the action of beta-lactamases.
Cefpodoxime proksetil - applied inside of 0.2 g 2 times a day.
Cepetamet pivoksil - applied internally on 0.5 g 2 times a day. Effective against pneumococcus, streptococcus, hemophilic rod, moraxella; Ineffective against staphylococci, enterococci.
Cefixime (suprax, cefspane) - applied internally by 0.2 g 2 times a day. To cefixime pneumococci, streptococci, hemophilic rod, intestinal daddy, Neisseria are highly sensitive; resistant - enterococci, Pseudomonas aeruginosa, staphylococci, enterobacter.
Cephalosporins can cause the following adverse reactions: a cross-allergy with penicillins in 5-10% of patients;
- allergic reactions - urticaria, korepodobnoyu rash, fever, eosinophilia, serum sickness, anaphylactic shock;
- in rare cases - leukopenia, hypoprothrombinemia and bleeding;
- increase in the content of transaminases in the blood; dyspepsia.
Group of monobactams
Monobactams are a new class of antibiotics derived from Pseudomonas acidophil and Chromobacterinum violaceum. At the heart of their structure is a simple beta-lactam ring, unlike related penicillins and cephalosporins, constructed from the beta-lactam ring conjugated to the thiazolidine, in this connection, the new compounds were named monobactams. They are exceptionally resistant to the action of β-lactamases produced by a non-negative flora, but are destroyed by beta-lactamase produced by staphylococci and bacteroides.
Azrethra (azactam) - the drug is active against a large number of gram-negative bacteria, including Escherichia coli, Klebsiella, Proteus and Pseudomonas aeruginosa, may be active when infection with resistant microorganisms or hospital infections caused by them; However, the drug does not have a significant activity against staphylococci, streptococci, pneumococci, bacteroides. It is administered intravenously, intramuscularly at intervals of 8 hours. The average daily dose is 3-6 g, the maximum daily dose is 8 g.
Group of carbapenems
Imipenem-cilostine (thienam) is a broad-spectrum beta-lactam preparation, which consists of two components: a tienamycin antibiotic (carbapenem) and cilastine - a specific enzyme that inhibits the metabolism of imipenem in the kidneys and significantly increases its concentration in urinary tract. The ratio of imipenem and cilastin in the preparation:.
The drug has a very wide range of antibacterial activity. It is effective against gram-negative flora (enterobacter, hemophilic rod, Klebsiella, Neisseria, proteus, pseudomonas, Salmonella, Yersinia, acinetobacter, gram-positive flora (all staphylococci, streptococci, pneumococci), and also in relation to anaerobic flora. Imipenem has a pronounced stability to the action of β-lactamases (penicillinases and cephalosporinases) produced by gram-positive and gram-negative bacteria. The drug is used for severe Gram-positive and Gram-negative infections caused by multiple resistant and intra-hospital strains of bacteria: sepsis, peritonitis, staphylococcal destruction of the lungs, peritoneal pneumonia caused by klebsiella, acinetobacter, enterobacter, hemophilic rod, serration, intestinal wand. Especially effective imipenem in the presence of polymicrobial flora.
Group of aminoglycosides
Aminoglycosides contain in their molecule aminosugars, connected by a glycosidic bond. These features of the structure of aminoglycosides explain the name of this group of antibiotics. Aminoglycosides have bactericidal properties, they act inside the cell of microorganisms, binding to ribosomes and breaking in the peptide chains the amino acid sequence (the resulting abnormal proteins are fatal for microorganisms). They can have varying degrees of nephrotoxicity (in 17% of patients) and ototoxic effect (in 8% of patients). According to D. R. Lawrence, hearing loss often occurs with the treatment of amikacin, neomycin and kanamycin, vestibular toxicity is characteristic of streptomycin, gentamicin, tobramischin. Ringing in the ears can serve as a warning about the defeat of the auditory nerve. The first signs of involvement in the process of the vestibular apparatus are a headache associated with movement, dizziness, nausea. Neomycin, gentamicin, amikacin are more nephrotoxic than tobramycin and netilmicin. The least toxic drug is netilmicin.
To prevent side effects of aminoglycosides, monitor serum aminoglycoside levels and record the audiogram once a week. For the early diagnosis of nephrotoxic action of aminoglycosides, it is recommended to determine the fractional excretion of sodium, N-acetyl-beta-D-glucosaminidase and beta2-microglobulin. If there is a violation of kidney function and hearing, aminoglycosides should not be prescribed. Aminoglycosides possess a postantibacterial effect, the severity of which depends on the concentration of the drug in the blood. In recent years, it has been suggested that a single dose of aminoglycoside at a higher dose is sufficiently effective in connection with increased bactericidal activity and an increase in the duration of the postantibacterial effect, while the frequency of side effects decreases effects. According to Tulkens (1991), the single administration of netilmicin and amikacin was not inferior in effectiveness to a 2-3-fold administration, but less frequently was accompanied by impaired renal function.
Aminoglycosides are broad-spectrum antibiotics: they affect gram-positive and gram-negative flora, but the greatest practical importance is their high activity in relation to the majority of gram-negative bacteria. They have a pronounced bactericidal effect on gram-negative aerobic bacteria (pseudomonas, Enterobacter, E. coli, Proteus, Klebsiella), but less effective against hemophilic sticks.
The main indications for the appointment of aminoglycosides are rather serious infections (in particular, hospital-acquired infections, caused by non-negative bacteria (pneumonia, urinary tract infection, septicemia), in which they are agents choice. In severe cases aminoglycosides are combined with antisignagic penicillins or cephalosporins.
In the treatment with aminoglycosides, the development of resistance of microflora to them is possible, which is due to the ability of microorganisms to produce specific enzymes (5 types of aminoglycoside acetyltransferases, 2 types of aminomycosphosphate transferases, aminoglycoside nucleotidyl transferase) that inactivate aminoglycosides.
Aminoglycosides II and III generations have higher antibacterial activity, a broader antimicrobial spectrum and greater resistance to enzymes that inactivate aminoglycosides.
The resistance to aminoglycosides in microorganisms is partially cross-linked. Microorganisms resistant to streptomycin and kanamycin are also resistant to monomycin, but are sensitive to neomycin and all other aminoglycosides.
Flora, resistant to aminoglycosides of the first generation, is sensitive to gentamycin and III aminoglycosides. Gentamycin resistant strains are also resistant to monomycin and kanamycin, but are sensitive to aminoglycosides of the third generation.
There are three generations of aminoglycosides.
The first generation of aminoglycosides
Of the first-generation drugs, kanamycin is most commonly used. Kanamycin and streptomycin are used as anti-tuberculosis drugs, neomycin and monomycin because of high toxicity, they are not used parenterally, they are prescribed inside. And intestinal infections. Streptomycin - is available in 0.5 and 1 g. Bottles. is administered intramuscularly every 12 hours. The average daily vine is 1 g. the maximum daily dose is 2 g. For the treatment of pneumonia, it is almost not currently used, it is used mainly for tuberculosis.
Kanamycin - is available in tablets of 0.25 g and in vials for intramuscular injection at 0.5 and I g. Just like streptomycin, it is used mainly for tuberculosis. It is administered intramuscularly at intervals of 12 hours. The average daily dose of the drug is 1-1.5 g, the maximum daily dose is 2 g.
Monomycin - is available in tablets of 0.25 g, bottles of 0.25 and 0.5 g. It is used intramuscularly at intervals of 8 hours. The average daily dose is 0.25 g, the maximum daily dose is 0.75 g. Pneumococci is weak, mainly used for intestinal infections.
Neomycin (kolomitsin, mizirin) - is available in tablets of 0.1 and 0.25 g and 0.5 g bottles. It is one of the most active antibiotics that suppress the intestinal bacterial flora in liver failure. It is applied internally by 0.25 g 3 times a day inside or intramuscularly at 0.25 g 3 times a day.
The second generation of aminoglycosides
The second generation of aminoglycosides is represented by gentamycin, which, unlike first-generation drugs, has a high activity in relation to Pseudomonas aeruginosa and acts on strains of microorganisms that developed resistance to aminoglycosides of the first generation. The antimicrobial activity of gentamicin is higher than that of kanamycin.
Gentamicin (Garamycin) - is issued in ampoules of 2 ml of 4% solution, bottles of 0.04 g of dry matter. It is used intramuscularly, in severe cases intravenously at intervals of 8 hours. The average daily dose is 2.4-3.2 mg / kg, the maximum daily dose is 5 mg / kg (this dose is prescribed in case of a severe condition of the patient). Usually used in a dose of 0.04-0.08 g intramuscularly 3 times a day. Gentamicin is active against aerobic Gram-negative bacteria, Escherichia coli, enterobacteria, pneumococcus, Proteus, Pseudomonas aeruginosa, but weakly active against streptococci, enterococci and inactive with anaerobic infection. In the treatment of septicemia, gentamicin is combined with one of beta-lactam antibiotics or antianaerobic drugs, for example, metronidazole or with one and / or another.
The third generation of aminoglycosides
The third generation of aminoglycosides is stronger than gentamicin, suppresses the Pseudomonas aeruginosa, the secondary resistance of the flora to these drugs is much less common than to gentamicin.
Tobramycin (brulamycin, obrazin) - is issued in ampoules of 2 ml in the form of a ready-made solution (80 g of the drug). It is used intravenously, intramuscularly at intervals of 8 hours. Doses are the same as gentamicin. The average daily dose for pneumonia is 3 mg / kg, the maximum daily dose is 5 mg / kg
Sizomycin - available in ampoules of 1, 1.5 and 2 ml of a 5% solution. It is administered intramuscularly at intervals of 6-8 hours, intravenous administration should be drip in a 5% glucose solution. The average daily dose of the drug is 3 mg / kg. the maximum daily dose is 5 mg / kg.
Amikacin (amikin) - is released in ampoules of 2 ml, which contain 100 or 500 mg of the drug, is administered intravenously, intramuscularly at intervals of 8-12 hours. The average daily dose is 15 mg / kg, the maximum daily dose is 25 mg / kg. Amikacin is the most effective drug among aminoglycosides of the third generation, unlike all other aminoglycosides, it is sensitive only to one inactivating enzyme, while the rest are at least to five. Strains resistant to amikacin are resistant to all other aminoglycosides.
Nethylmicin is a semisynthetic aminoglycoside, it is active in infection with some strains resistant to gentamicin and tobramycin, it is less oto- and nephrotoxic. It is administered intravenously, intramuscularly at intervals of 8 hours. The daily dose of the drug is 3-5 mg / kg.
By the degree of decrease in the antimicrobial effect, the aminoglycosides are arranged as follows: amikacin-netilmicin-gentamicin-tobramycin-streptomycin-neomycin-kanamycin-monomycin.
Group of tetracyclines
Antibiotics of this group have a wide spectrum of bacteriostatic action. They affect protein synthesis by binding to ribosomes and stopping the access of complexes consisting of transport RNA with amino acids to complexes of information RNA with ribosomes. Tetracyclines accumulate inside the bacterial cell. By origin, they are divided into natural (tetracycline, oxytetracycline, chlortetracycline or biomycin) and semisynthetic (metacycline, doxycycline, minocycline, morphocycline. roletetracycline). Tetracyclines are active in almost all infections caused by gram-negative and gram-positive bacteria, with the exception of most strains of proteium and Pseudomonas aeruginosa. If the stability of microflora develops in the treatment with tetracyclines, then it has a complete cross-type character (with the exception of minocycline), therefore all tetracyclines are prescribed by single indications. Tetracyclines can be used in many common infections, especially mixed infections, or in cases where treatment begins without identification of the pathogen, i.e. with bronchitis and bronchopneumonia. Tetracyclines are especially effective in mycoplasmal and chlamydial infections. In average therapeutic concentrations, tetracyclines are found in the lungs, liver, kidneys, spleen, uterus, tonsils, prostate gland, accumulate in inflamed and tumor tissues. In a complex with calcium are deposited in bone tissue, enamel of teeth.
Natural tetracyclines
Tetracycline - is available in tablets of 0.1 and 0.25 g, assigned at intervals of 6 hours. The average daily dose is 1-2 g, the maximum daily dose is 2 g. Intramuscular injection of 0.1 g 3 times a day.
Oxytetracycline (terramycin) - is administered by mouth, intramuscularly, intravenously. For oral administration is available in tablets of 0.25 g. Inside the drug is used at intervals of 6 hours, the average daily dose is 1-1.5 g, the maximum daily dose is 2 g. Intramuscularly the drug is administered at intervals of 8-12 hours, the average daily dose is 0.3 g, the maximum dose is 0.6 g. Intravenously, the drug is administered at intervals of 12 hours, the average daily dose is 0.5-1 g, the maximum dose is 2 g.
Chlortetracycline (biomycin, aureomycin) is used internally, there are forms for intravenous administration. Inside is applied at intervals of 6 hours, the average daily dose of the drug is 1-2 g, maximum -3 g. Intravenously applied at intervals of 12 hours, the average and maximum daily doses - 1 g.
Semisynthetic tetracyclines
Metacycline (rondomycin) - is available in capsules of 0.15 and 0.3 g, administered internally at intervals of 8-12 hours. The average daily dose is 0.6 g, the maximum is 1.2 g.
Doxycycline (vibramycin) - available in capsules of 0.5 and 0.1 grams, in ampoules for intravenous administration of 0.1 g. Inside is applied to 0.1 g 2 times a day, in the following days - 0.1 g per day, in severe cases the daily dose on the first and subsequent days is 0.2 g.
For intravenous infusion, 0.1 g of vial powder is dissolved in 100-300 ml of isotonic sodium chloride solution and administered intravenously drip for 30-60 minutes 2 times a day.
Minocycline (clinomycin) is administered internally at intervals of 12 hours. On the first day, the daily dose is 0.2 g, in the following days - 0.1 g, a brief daily dose can be increased to 0.4 g.
Morfocycline - is available in vials for intravenous administration of 0.1 and 0.15 g, is administered intravenously at intervals of 12 hours in a 5% solution of glucose. The average daily dose of the drug is 0.3 g, the maximum daily dose is 0.45 g.
Roilititracycline (velacycline, reverin) - the drug is administered intramuscularly 1-2 times a day. The average daily dose is 0.25 g, the maximum daily dose is 0.5 g.
The incidence of side effects with tetracyclines is 7-30%. The prevailing toxic complications due to the catabolic action of tetracyclines - hypotrophy, hypovitaminosis, liver, kidney, ulcer gastrointestinal tract, skin photosensitivity, diarrhea, nausea; complications associated with the suppression of saprophytes and the development of secondary infections (candidiasis, staphylococcal enterocolitis). Children up to 5-8 years of tetracyclines are not prescribed.
When treating tetracyclines B. G. Kukes recommends the following:
- between them there is a cross-allergy, patients with an allergy to local anesthetics can react to oxytetracycline (often introduced on lidocaine) and tetracycline hydrochloride for intramuscular injection;
- tetracyclines can cause increased catecholamine excretion in the urine;
- they cause an increase in the level of alkaline phosphatase, amylase, bilirubin, residual nitrogen;
- it is recommended to take tetracyclines inwards on an empty stomach or 3 hours after eating, squeezing 200 ml of water, which reduces the irritating effect on the wall of the esophagus and intestines, improves absorption.
Group of macrolides
Preparations of this group contain in the molecule a macrocyclic lactone ring linked to carbohydrate residues. These are predominantly bacteriostatic antibiotics, but depending on the type of pathogen and concentration, they may exhibit a bactericidal effect. The mechanism of their action is similar to the mechanism of action of tetracyclines and is based on binding to ribosomes and preventing access of a complex of transport RNA with an amino acid to a complex of information RNA with ribosomes, which leads to suppression of synthesis proteins.
Highly sensitive to macrolides are non-positive cocci (pneumococcus, pyogenic streptococcus), mycoplasma, legionella, chlamydia, whooping cough stick Bordetella pertussis, diphtheria bacillus.
Moderately sensitive to macrolides, hemophilic rod, staphylococcus, resistant - bacteroides, enterobacteria, rickettsia.
The activity of macrolides against bacteria is related to the structure of the antibiotic. There are macrolides 14-membered (erythromycin, oleandomycin, fluoritromycin, clarithromycin, megalomycin, dithiramycin), 15-membered (azithromycin, roxitramycin), 16-membered (spiramycin, yozamycin, rosamycin, turimycin, myocamecin). 14-member macrolides possess a higher bactericidal activity than the 15-membered ones with respect to streptococci and pertussis. Clarithromycin has the greatest effect against streptococci, pneumococci, diphtheria bacillus, azithromycin is highly effective against hemophilic rod.
Macrolides are highly effective in respiratory infections and pneumonia, as they penetrate well into the mucous membrane of the bronchopulmonary system, bronchial secretions and sputum.
Macrolides are effective against pathogens located intracellularly (in tissues, macrophages, leukocytes), which is especially important in the treatment of legionella and chlamydia infection, since these pathogens are located intracellularly. Macrolides can develop resistance, so they are recommended to be used as part of combination therapy for severe infection, with resistance to other antibacterial drugs, allergic reactions or hypersensitivity to penicillins and cephalosporins, as well as mycoplasmal and chlamydial infection.
Erythromycin - is available in tablets of 0.1 and 0.25 g, capsules of 0.1 and 0.2 g, bottles for intramuscular and intravenous administration of 0.05, 0.1 and 0.2 g. Assigned inside, intravenously, intramuscularly.
Inside is applied at intervals of 4-6 hours, the average daily dose is 1 g, the maximum daily dose is 2 g. Intramuscular and intravenously applied at intervals of 8-12 hours, the average daily dose - 0.6 g, the maximum - 1 g.
The drug, like other macrolides, manifests its effect more actively in the alkaline environment. There is evidence that in an alkaline environment erythromycin is converted into a broad-spectrum antibiotic that actively suppresses Highly resistant to many chemotherapy drugs Gram-negative bacteria, in particular, Pseudomonas aeruginosa, Escherichia, Proteus, Klebsiella. This can be used for infections of the urinary, biliary tract and local surgical infection.
D. R. Lawrence recommends the use of erythromycin in the following cases:
- with mycoplasmal pneumonia in children - the drug of choice, although for the treatment of adults, tetracycline is preferable;
- for the treatment of patients with legionella pneumonia as a first-line drug alone or in combination with rifampicin;
- with chlamydial infection, diphtheria (including with carriage) and whooping cough;
- with gastroenteritis caused by campylobacteria (erythromycin promotes the elimination of microorganisms from the body, although it does not necessarily shorten the duration of clinical manifestations);
- in patients infected with Pseudomonas aeruginosa, pneumococcus, or with allergies to penicillin.
Ericycline - a mixture of erythromycin and tetracycline. Issued in capsules of 0.25 g, prescribed 1 capsule every 4-6 hours, the daily dose of the drug is 1.5-2 g.
Oleandomycin - is available in tablets of 0.25 g. Take every 4-6 hours. The average daily dose is 1-1.5 g, the maximum daily dose is 2 g. There are forms for intravenous, intramuscular injection, daily doses are the same.
Oletetrin (tetraolyn) is a combined preparation consisting of oleandomycin and tetracycline in the ratio:. It is produced in capsules of 0.25 g and in vials of 0.25 g for intramuscular, intravenous administration. Assigned inside by 1-1.5 grams per day in 4 divided doses with 6-hour intervals.
For intramuscular injection, the contents of the vial are dissolved in 2 ml of water or isotonic sodium chloride solution and 0.1 g of the drug is administered 3 times a day. For intravenous administration, 1% solution is used (0.25 or 0.5 g of the drug is dissolved in 25 or 50 ml of isotonic sodium chloride solution or water for injection, respectively, and injected slowly). You can apply intravenous drip infusion. The average daily dose intravenously is 0.5 g 2 times a day, the maximum daily dose is 0.5 g 4 times a day.
In recent years, there have appeared so-called "new" macrolides. Their characteristic feature is a broader spectrum of antibacterial action, stability in an acidic environment.
Azithromycin (sumamed) - refers to the antibiotic group of azamide, close to macrolides, is available in tablets of 125 and 500 mg, 250 mg capsules. Unlike erythromycin, it is a bactericidal antibiotic with a wide spectrum of activity. Highly effective against gram-positive microbes (pyogenic streptococci, staphylococci, in including those producing beta-lactamase, a causative agent of diphtheria), moderately active against enterococci. Effective against gram-negative pathogens (hemophilia, pertussis, E. coli, shigella, salmonella, yersiniosis, Legionella, Helicobacter, Chlamydia, Mycoplasmas), the causative agent of gonorrhea, spirochetes, many anaerobes, toxoplasm. Azithromycin is administered orally, usually on the first day, 500 mg once, from 2 to 5 days - 250 mg once a day. The duration of treatment is 5 days. When treating acute urogenital infections, a single dose of 500 mg of azithromycin is sufficient.
Midekamycin (macropen) - is produced in tablets of 0.4 g, has a bacteriostatic effect. The spectrum of antimicrobial action is close to sumamed. It is administered orally at a daily dose of 130 mg / kg body weight (3-4 times).
Iozamycin (josamycin, vilprafen) - is available in tablets at 0.05 g; 0.15 g; 0.2 g; 0.25 g; 0.5 g. Bacteriostatic drug, antimicrobial spectrum is close to the spectrum of azithromycin. Assigned to 0.2 g 3 times a day for 7-10 days.
Roxithromycin (rulid) - a macrolide antibiotic of bacteriostatic action, is available in tablets of 150 and 300 mg, the antimicrobial spectrum is close to the spectrum of azithromycin, but weaker action against helikobacteria, rods whooping cough. Resistant to roksitromitsinu pseudomonas, E. coli, Shigella, Salmonella. It is administered orally 150 mg twice a day, in severe cases, a dose increase of 2 times is possible. The course of treatment lasts 7-10 days.
Spiramycin (rovamycin) - is manufactured in tablets of 1.5 million ME and 3 million ME, as well as in suppositories containing 1.3 million ME (500 mg) and 1.9 million ME (750 mg) of the drug. Antimicrobial spectrum is close to the spectrum of azithromycin, but compared with other macrolides is less effective against chlamydia. Resistant to spiramycin enterobacteria, pseudomonas. Assigned inside 3-6 million ME 2-3 times a day.
Kitazamycin is a bacteriostatic macrolide antibiotic, produced in 0.2 g tablets, 0.25 g capsules in 0.2-g ampoules for intravenous administration. The spectrum of antimicrobial action is close to the spectrum of azithromycin. Assigned to 0.2-0.4 g 3-4 times a day. In severe infectious and inflammatory processes, intravenously administered 0.2-0.4 g 1-2 times a day. The drug is dissolved in 10-20 ml of 5% glucose solution and injected into the vein slowly for 3-5 minutes.
Clarithromycin is a bacteriostatic macrolide antibiotic, produced in tablets of 0.25 g and 0.5 g. The spectrum of antimicrobial action is close to the spectrum of azithromycin. The drug is considered to be most effective against Legionella. Assigned to 0.25 g 2 times a day, with severe disease, the dose can be increased.
Dirithromycin - available in tablets of 0.5 g. When administered orally, dirithromycin is subjected to non-enzymatic hydrolysis to erythromycylamine, which has an antimicrobial effect. The antibacterial effect is similar to that of erythromycin. Assigned inside by 0.5 g once a day.
Macrolides can cause side effects (not often):
- dyspepsia (nausea, vomiting, abdominal pain);
- diarrhea;
- skin allergic reactions.
There are also antifungal macrolides.
Amphotericin B - is administered only intravenously drip at intervals of 72 hours, the average daily dose is 0.25-1 mg / kg, the maximum daily dose is 1.5 mg / kg.
Flucytosine (ancobane) - applied internally at intervals of 6 hours. The average daily dose is 50-100 mg / kg, the maximum daily dose is 150 mg / kg.
Group of Levomycetin
Mechanism of action: inhibits the synthesis of protein in microorganisms, inhibiting the synthesis of the enzyme that carries the peptide chain to a new amino acid on the ribosome. Levomycetin exhibits bacteriostatic activity, but most strains of hemophilic rod, pneumococcus, and some Shigella species are bactericidal. Levomycetin is active against non-positive, gram-negative. aerobic and anaerobic bacteria, mycoplasmas, chlamydia, rickettsia, but Pseudomonas aeruginosa is resistant to it.
Levomycetin (chlorocide, chloramphenicol) - is available in tablets of 0.25 and 0.5 g, extended-dose tablets at 0.65 g, capsules at 6.25 g. It is taken by mouth at intervals of 6 hours, the average daily dose is 2 g, the maximum daily dose is 3 g.
Levomycetin succinate (chlorocide C) - a form for intravenous and intramuscular injection, is available in 0.5 and 1 g bottles. It is administered intravenously or intramuscularly at intervals of 8-12 hours, the average daily dose of the drug is 1.5-2 g, the maximum daily dose is 4 g.
Preparations of the group of levomycetin can cause the following side effects: dyspeptic disorders, aplastic states of the bone marrow, thrombocytopenia, agranulocytosis. Preparations of Levomycetin are not prescribed for pregnant women and children.
Group of lincosamines
Mechanism of action: Lincosamines bind to ribosomes and inhibit protein synthesis like erythromycin and tetracycline, in therapeutic doses have a bacteriostatic effect. Preparations of this group are effective against gram-positive bacteria, staphylococci, streptococci, pneumococci, diphtheria rods and some anaerobes, including agents of gas gangrene and tetanus. The drugs are active against microorganisms, especially staphylococci (including those producing beta-lactamase), resistant to other antibiotics. Do not act on gram-negative bacteria, fungi, viruses.
Lincomycin (Lincocin) - is available in capsules of 0.5 g, in ampoules of 1 ml with 0.3 g of substance. Assigned inside, intravenously, intramuscularly. Inside is applied at intervals of 6-8 hours, the average daily dose is 2 g, the maximum daily dose is 3 g.
Intravenous and intramuscularly applied at intervals of 8-12 hours, the average daily dose is 1-1.2 g, the maximum daily dose is 1.8 g. With the rapid intravenous administration of the drug, especially in large doses, the development of collapse and respiratory failure is described. Contraindicated in severe liver and kidney disease.
Clindamycin (Dalacin C) - is available in capsules of 0.15 g and in ampoules of 2 ml with 0.3 g of substance in one ampoule. It is used inside, intravenously, intramuscularly. The drug is a chlorinated derivative of lincomycin, has a large antimicrobial activity (2-10 times more active against gram-positive staphylococci, mycoplasma, bacteroides) and is more easily absorbed from intestines. At low concentrations, it exhibits bacteriostatic, and in high concentrations bactericidal properties.
Inside is taken at intervals of 6 hours, the average daily dose is 0.6 g, the maximum is 1.8 g. Intravenous or intramuscular injection at intervals of 6-12 hours, the average daily dose is 1.2 g, the maximum - 2.4 g.
Group of anzamycins
The group of anamycins includes anamycin and rifampicins.
Anamycin - is administered orally at an average daily dose of 0.15-0.3 g.
Rifampicin (rifadin, benemycin) kills bacteria by binding to DNA-dependent RNA polymerase and suppressing RNA biosynthesis. It is active against mycobacteria tuberculosis, leprosy, and also non-positive flora. Has bactericidal action, but does not affect non-negative bacteria.
Produced in capsules at 0.05 and 0.15 g, applied orally 2 times a day. The average daily dose is 0.6 g, the highest daily intake is 1.2 g.
Rifamycin (rifotsin) - the mechanism of action and spectrum of antimicrobial influence is the same as that of rifampicin. Produced in ampoules of 1.5 ml (125 mg) and 3 ml (250 mg) for intramuscular injection and 10 ml (500 mg) for intravenous administration. Intramuscularly administered at intervals of 8-12 hours, the average daily dose is 0.5-0.75 g, the maximum daily dose is 2 g. Intravenously injected at intervals of 6-12 hours, the average daily dose is 0.5-1.5 g, the maximum daily dose is 1.5 g.
Rifamethoprim (rifaprim) - is available in capsules containing 0.15 g of rifampicin and 0.04 g of trimethoprim. The daily dose is 0.6-0.9 g, taken in 2-3 doses for 10-12 days. Effective against mycoplasmal and legionella pneumonia, as well as pulmonary tuberculosis.
The drugs rifampicin and rifotsin can cause the following side effects: flu-like syndrome (malaise, headache, fever), hepatitis, thrombocytopenia, hemolytic syndrome, skin reactions (reddening of the skin, itching, rashes), dyspeptic phenomena (diarrhea, abdominal pain, nausea, vomiting). In the treatment of rifampicin, urine, tears, sputum acquire an orange-red color.
Group of polypeptides
Polymyxin
They act mainly on gram-negative flora (intestinal, dysenteric, typhoid-bacillus, paratyphoid flora, pseudomonas, Pseudomonas aeruginosa), but do not affect Proteus, Diphtheria, Clostridium, mushrooms.
Polymyxin B - is issued in vials of 25 and 50 mg. It is used for sepsis, meningitis (injected intralumbnally), pneumonia, urinary tract infections caused by pseudomonas. In infections caused by another non-negative flora, polymyxin B is used only in the case of multidrug resistance of the pathogen to other less toxic preparations. It is administered intravenously and intramuscularly. Intravenously administered at intervals of 12 hours, the average daily dose is 2 mg / kg, the maximum daily dose is 150 mg / kg. Intramuscularly administered at intervals of 6-8 hours, the average daily dose is 1.5-2.5 mg / kg, the maximum daily dose is 200 mg / kg.
Side effects of polymyxin: with parenteral administration has nephro- and neurotoxic effects, it is possible to block neuromuscular conduction, allergic reactions.
Glycopeptides
Vancomycin - derived from Streptomyces oriental is fungus, acts on fissile microorganisms, suppressing the formation of the peptidoglycan component of the cell membrane and DNA. It has a bactericidal action against most pneumococci, non-positive cocci and bacteria (including beta-lactamase-forming staphylococci), and does not develop.
Vancomycin is applied:
- with pneumonia and enterocolitis caused by clostridia or less often staphylococci (pseudomembranous colitis);
- in severe infections caused by staphylococci, resistant to conventional antistaphylococcal antibiotics (multiple resistance), streptococci;
- with severe staphylococcal infections in people with allergies to penicillins and cephalosporins;
- with streptococcal endocarditis in patients with an allergy to penicillin. In this case, vancomycin is combined with an aminoglycoside antibiotic;
- in patients with Gram-positive infection with allergic to β-lactams.
Vancomycin is administered intravenously at intervals of 8-12 hours, the average daily dose is 30 mg / kg, the maximum daily dose is 3 g. The main side effect: damage to the VIII pair of cranial nerves, nephrotoxic and allergic reactions, neutropenia.
Ristomycin (ristocetin, spontin) - acts bactericidal against gram-positive bacteria and on staphylococci, resistant to penicillin, tetracycline, levomycetin. Gram-negative flora has no significant effect. Introduced only intravenously drip on 5% glucose solution or isotonic sodium chloride solution 2 times a day. The average daily dose is, 0, 00 units, the maximum daily dose is, 0, 00 units.
Teicoplanin (teycomycin A2) is a glycopeptide antibiotic, close to vancomycin. Effective only in relation to gram-positive bacteria. The highest activity is shown in relation to Staphylococcus aureus, pneumococcus, green streptococcus. It is able to act on staphylococci, which are inside neutrophils and macrophages. Intramuscular injection of 200 mg or 3-6 mg / kg of body weight 1 time per day. Oto- and nephrotoxic effects are possible (rarely).
Fuzidine
Fusidine is an antibiotic active against non-negative and Gram-positive cocci, many strains of listeria, clostridia, mycobacteria are susceptible to it. Has a weak antiviral effect, but does not affect streptococcus. Fusidine is recommended for use in the infection of staphylococcus, producing β-lactamase. In normal doses, it acts bacteriostatically, with an increase in the dose 3-4 times the bactericidal effect. The mechanism of action is suppression of protein synthesis in microorganisms.
Produced in tablets of 0.25 g. It is administered internally at intervals of 8 hours, the average daily dose is 1.5 g, the maximum daily dose is -3 g. There is also a form for intravenous administration. Intravenously applied at intervals of 8-12 hours, the average daily dose is 1.5 g, the maximum daily dose is 2 g.
Novobiocin
Novobiocin is a bacteriostatic drug intended mainly for the treatment of patients with stable staphylococcal infection. The main spectrum of action: gram-positive bacteria (especially staphylococci, streptococci), meningococci. The majority of gram-negative bacteria are resistant to the action of novobiocin. Assigned inside and intravenously. Inside is applied at intervals of 6-12 hours, the average daily dose is 1 g, the maximum daily dose is 2 g. Intravenously applied at intervals of 12-24 hours, the average daily dose is 0.5 g, the maximum daily dose is 1 g.
Phosphomycin
Fosfomycin (phosphocin) is a broad-spectrum antibiotic that has a bactericidal effect on gram-positive and gram-negative bacteria and microorganisms resistant to other antibiotics. Virtually devoid of toxicity. Active in the kidneys. It is used primarily for inflammatory diseases of the urinary tract, but also for pneumonia, sepsis, pyelonephritis, endocarditis. It is produced in vials of 1 and 4 grams, is injected intravenously slowly by jet or is better drip at intervals of 6-8 h. The average daily dose is 200 mg / kg (ie 2-4 g every 6-8 hours), the maximum daily dose is 16 g. 1 g of the drug is dissolved in 10 ml, 4 g in 100 ml of isotonic sodium chloride solution or 5% glucose solution.
Preparations of fluoroquinolones
Currently, fluoroquinolones along with cephalosporins occupy one of the leading places in the treatment of bacterial infections. Fluoroquinolones have a bactericidal effect, which is due to the inhibition of bacterial topoisomerase type 2 (DNA gyrase), which leads to a violation of genetic recombination, DNA repair and replication, and when using large doses of drugs - inhibition transcription of DNA. The consequence of these influences of fluoroquinolones is the death of bacteria. Fluoroquinolones are antibacterial agents of a wide spectrum of action. They are effective against gram-positive and gram-negative bacteria, including streptococci, staphylococci, pneumococci, pseudomonas, hemophilic rod, anaerobic bacteria, campylobacteria, chlamydia, mycoplasmas, legionella, gonococcus. With regard to gram-negative bacteria, the effectiveness of fluoroquinolones is more pronounced compared with the effect on gram-positive flora. Fluoroquinolones are usually used to treat infectious inflammatory processes in the bronchopulmonary and urinary systems in connection with the ability to penetrate well into these tissues.
Resistance to fluoroquinolones develops rarely and is associated with two causes:
- structural changes in DNA-gyrase, in particular, topoisomer-A (for pefloxacin, ofloxacin, ciprofloxacin)
- change in the permeability of the bacterial wall.
Fluorescinolone resistant strains of serrations, tsitrobacter, E. coli, pseudomonas, Staphylococcus aureus are described.
Ofloxacin (tarivid, zanocin, flobocin) - is available in tablets of 0.1 and 0.2 g, for parenteral administration - in vials containing 0.2 g of the drug. Most often it is administered internally by 0.2 g 2 times in laziness, with a heavy recurrent infection the dose can be doubled. In very serious infections, sequential (sequential) treatment is used, i.e. begin therapy with intravenous administration of 200-400 mg, and after the improvement of the state go to oral intake. Intravenous ofloxacin is administered dropwise in 200 ml of isotonic sodium chloride solution or 5% glucose solution. The drug is well tolerated. Possible allergic reactions, skin rashes, dizziness, headache, nausea, vomiting, increased blood levels of alanine amyotransferase.
High doses negatively affect the articular cartilage and bone growth, therefore it is not recommended to take Tariqid to children under 16 years old, pregnant and breastfeeding women.
Ciprofloxacin (ciprobay) - the mechanism of action and spectrum of antimicrobial effects are similar to those of utaravid. Forms of release: tablets of 0.25, 0.5 and 0.75 g, bottles of 50 ml of an infusion solution containing 100 mg of the drug; bottles of 100 ml of an infusion solution containing 200 mg of the drug; ampules of 10 ml of a concentrate of an infusion solution containing 100 mg preparation.
It is applied intravenously and intravenously 2 times a day, intravenously can be injected slowly by jet or drip.
The average daily intake for oral administration is 1 g, with intravenous administration - 0.4-0.6 g. With severe infection, you can increase the oral dose to 0.5 g 3 times a day.
The same side effects as ofloxacin are possible.
Norfloxacin (nolycin) - available in tablets of 0.4 g. It is prescribed inside before meals for 200-400 mg 2 times a day. Reduces the clearance of theophylline, H2-blockers, may increase the risk of side effects of these drugs. Simultaneous with norfloxacin reception of non-steroidal anti-inflammatory drugs can cause convulsions, hallucinations. Dyspeptic phenomena, arthralgia, photosensitivity, elevation in the blood level of transaminases, abdominal pain are possible.
Enoxacin (penetrax) - available in tablets of 0.2-0.4 g. Assigned inside by 0.2-0.4 g 2 times a day.
Pefloxacin (abaktal) - is available in tablets of 0.4 g and in ampoules containing 0.4 g of the drug. Assign inside of 0.2 g 2 times a day, with a severe condition, first use intravenous drip (400 mg in 250 ml of 5% glucose solution), and then switch to oral administration.
In comparison with other fluoroquinolones it is distinguished by high biliary excretion and reaches high concentrations in bile, is widely used for the treatment of intestinal infections and infectious and inflammatory diseases of biliary excrement ways. In the process of treatment, headache, nausea, vomiting, abdominal pain, diarrhea, thirst, photodermatitis are possible.
Lomefloxacin (maksakvin) - available in tablets of 0.4 g. Has a pronounced bactericidal effect on most gram-negative, many non-positive (staphylococcus, streptococcus) and intracellular (chlamydia, mycoplasma, legionella. brucella) pathogens. Assigned to 0.4 grams I once a day.
Sparfloxacin (zagam) is a new difluorinated quinolone, has a ciprofloxacin-like structure, but contains additional 2 methyl groups and the second fluorine atom, which significantly increases the activity of this drug against Gram-positive microorganisms, as well as intracellular anaerobic pathogens.
Fleoxycin is highly active against gram-negative bacteria, especially enterobacteria, and against gram-positive microorganisms, including staphylococci. Streptococci and anaerobes are less sensitive or resistant to fleoxaxin. Combination with phosphomycin increases activity against pseudomonas. It is prescribed 1 time per day inside by 0.2-0.4 g. Side effects are rare.
The derivatives of quinoxoline
Hinoksidin - a synthetic bactericidal antibacterial drug, active against the protein, Klebsiella (Friedlander's sticks), Pseudomonas aeruginosa, intestinal and dysentery bacillus, Salmonella, Staphylococcus, clostridia. Assigned inside after eating to 0.25 g 3-4 times a day.
Side effects: dyspepsia, dizziness, headache, muscle cramps (more often gastrocnemius).
Dioxydin - the spectrum and bactericidal mechanism of action of dioxidine are similar to those of quinoxidine, but the drug is less toxic and can be administered intravenously. It is used for severe pneumonia, sepsis intravenously drops of 15-30 ml of 0.5% solution in 5% glucose solution.
Nitrofuran preparations
The bacteriostatic effect of nitrofurans is provided by an aromatic nitro group. There is also evidence of a bactericidal effect. The spectrum of action is wide: drugs suppress the activity of non-positive and non-negative bacteria, anaerobes, many protozoa. The activity of nitrofurans is preserved in the presence of pus and other products of tissue decay. With pneumonia, furazolidone and furagin are most widely used.
Furazolidonum - is appointed or nominated inside by 0.15-0.3 g (1-2 tablets) 4 times a day.
Furagin - prescribed in tablets 0.15 g 3-4 times a day or intravenously drip 300-500 ml 0.1% solution.
Solafur is a water-soluble drug of furagin.
Imidazole preparations
Metronidazole (trichopolum) - in anaerobic microorganisms (but not in aerobic, in which it also penetrates) turns into the active form after the reduction of the nitro group, which binds to DNA and prevents the formation of nucleic acids acids.
The drug has a bactericidal effect. Effective in anaerobic infection (the specific gravity of these microorganisms in the development of sepsis has increased significantly). Metronidazole is sensitive to Trichomonas, Giardia, Amoeba, Spirochaete, Clostridium.
Assigned in tablets of 0.25 g 4 times a day. For intravenous drip infusion, metrogyl - metronidazole is used in 100 ml vials (500 mg).
Phytoncidal preparations
Chlorophyllipt is a phytoncid with a broad spectrum of antimicrobial action, it has an anti-staphylococcal action. Obtained from the leaves of eucalyptus. It is used in the form of 1% alcohol solution for 30 drops 3 times a day for 2-3 weeks or intravenously drip 2 ml 0.25% solution in 38 ml isotonic sodium chloride solution.
Sulfanilamide preparations
Sulfanilamides are derivatives of sulfanilic acid. All sulfanilamides are characterized by a single mechanism of action and a virtually identical antimicrobial spectrum. Sulfanilamides are competitors of paraaminobenzoic acid, which is necessary for most bacteria for the synthesis of folic acid, which is used by the microbial cell to form nucleic acids. By the nature of the action of sulfonamides - bacteriostatic drugs. The antimicrobial activity of sulfonamides is determined by the degree of their affinity for the receptors of microbial cells, i.e. ability to compete for receptors with paraaminobenzoic acid. Since most bacteria can not utilize folic acid from the external environment, sulfonamides are a broad-spectrum drug.
Spectrum of action of sulfonamides
Highly sensitive microorganisms:
- streptococcus, staphylococcus, pneumococcus, meningococcus, gonococcus, E. coli, salmonella, cholera vibrio, anthrax, hemophilic bacteria;
- chlamydia: causative agents of trachoma, psittacosis, ornithosis, inguinal lymphogranulomatosis;
- protozoa: plasmodium malaria, toxoplasma;
- pathogenic fungi, actinomycetes, coccidia.
Moderately sensitive microorganisms:
- microbes: enterococci, green streptococcus, proteus, clostridia, pasteurellas (including pathogens of tularemia), brucellae, mycobacterium leprosy;
- protozoa: leishmania.
Sulfonylamide resistant species of pathogens: salmonella (some species), pseudomonas, pertussis and diphtheria bacillus, mycobacterium tuberculosis, spirochetes, leptospira, viruses.
Sulfanilamides are divided into the following groups:
- Short-acting drugs (T1 / 2 less than 10 hours): norsulfazole, ethazole, sulfadimezine, sulfazoxazole. They are taken orally 1 g every 4-6 hours, the first dose is often recommended 1 g. Etazol is released in ampoules in the form of sodium salt for parenteral administration (10 ml of a 10% solution in an ampoule), the sodium salt of norsulfazole is also administered intravenously with 5-10 ml of a 10% solution. In addition, these drugs and other short-acting sulfanilamides are produced in tablets of 0.5 g.
- Drugs of average duration of action (T1 / 2 10-24 h): sulfazin, sulfamethoxazole, sulfomoxal. Wide application have not received. Produced in tablets of 0.5 g. Adults on the first reception give 2 g, then for 1-2 days for 1 g every 4 hours, then 1 g every 6-8 hours.
- Long-acting drugs (T1 / 2 24-48 h): sulfapiridazine, sulfadimethoxin, sulfamonomethoxin. Produced in tablets of 0.5 g. Assigned to an adult on the first day of I-2 g, depending on the severity of the disease, the next day give 0.5 or 1 g 1 time per day and spend the entire course on this maintenance dose. The average duration of treatment is 5-7 days.
- Drugs of super-long-acting (T1 / 2 more than 48 hours): sulfalene, sulfadoxine. Produced in tablets of 0.2 g. Sulfalene is administered orally daily or 1 time per 7-10 days. Daily appoint with acute or rapid infections, I once every 7-10 days - with chronic, long-lasting. With daily intake appoint an adult on the 1st day of 1 g, then 0.2 g per day, take 30 minutes before meals.
- Topical preparations that are poorly absorbed in the gastrointestinal tract: sulgin, phthalazole, phtazine, disulformin, salazosulfapyridine, salazopyridazine, salazodimethoxin. Applied with intestinal infections, with pneumonia are not prescribed.
Highly effective combination of sulfonamides with an antifolia drug trimethoprim. Trimethoprim enhances the action of sulfonamides, disrupting the reduction of trihydrophosphate to tetrahydrofolic acid, responsible for protein metabolism and division of the microbial cell. The combination of sulfonamides with trimethoprim provides a significant increase in the degree and spectrum of antimicrobial activity.
The following preparations containing sulfonamides in combination with trimethoprim are produced:
- Biseptol-120 - contains 100 mg of sulfamethoxazole and 20 mg of trimethoprim.
- Biseptol-480 - contains 400 mg of sulfamethoxazole and 80 mg of trimethoprim;
- Biseptol for intravenous infusions of 10 ml;
- proteseptil - contains sulfadimezin and trimethoprim in the same doses as biseptol;
- sulfaten - a combination of 0.25 g of sulfonamethoxin with 0.1 g of trimethoprim.
The most widely used biseptol, which unlike other sulfonamides has not only bacteriostatic, but also bactericidal action. Biseptol is taken once a day for 0.48 g (1-2 tablets per reception).
Side effects of sulfonamides:
- crystallization of acetylated metabolites of sulfonamides in the kidneys and urinary tract;
- alkalinization of urine increases the ionization of sulfanilamides, which are weak acids, in ionized form, these preparations are much more soluble in water and urine;
- alkalinization of urine reduces the probability of crystalluria, helps maintain high concentrations of sulfonamides in urine. To ensure a stable alkaline urine reaction, it is sufficient to prescribe soda at 5-10 g per day. Crystalluria, caused by sulfonamides, can be asymptomatic or cause renal colic, hematuria, oliguria, and even anuria;
- Allergic reactions: skin rashes, exfoliative dermatitis, leukopenia;
- dyspeptic reactions: nausea, vomiting, diarrhea; in newborns and infants, sulfonamides can cause methemoglobinemia due to the oxidation of fetal hemoglobin, accompanied by cyanosis;
- in the case of hyperbilirubinemia, the use of sulfonamides is dangerous, since they displace bilirubin from binding to the protein and contribute to the manifestation of its toxic effect;
- when using biseptol may develop a picture of folic acid deficiency (macrocytic anemia, defeat of the gastrointestinal tract), to eliminate this side effect, you need folic acid acid. Currently, sulfonamides are rarely used, especially if antibiotics are intolerant or resistant to microflora.
Combination of antibacterial drugs
Synergy occurs when the following drugs are combined:
Penicillins | + Aminoglycosides, cephalosporins |
Penicillins (penicillinase-resistant) |
+ Penicillins (penicillinase-unstable) |
Cephalosporins (other than cephaloridine) | + Aminoglycosides |
Macrolides | + Tetracyclines |
Levomycetin | + Macrolides |
Tetracycline, macrolides, lincomycin | + Sulfonamides |
Tetracyclines, lincomycin, nystatin | + Nitrofurans |
Tetracyclines, nystatin | + Oxyquinolines |
Thus, the synergy of action is noted when combining bactericidal antibiotics with a combination of two bacteriostatic antibacterial drugs. Antagonism occurs when a combination of bactericidal and bacteriostatic drugs.
The combined use of antibiotics is performed in severe and complicated pneumonia (pneumonia subscription, pleural empyema), when monotherapy may be ineffective.
The choice of antibiotic in various clinical situations
Clinical situation |
Probable pathogen |
Antibiotic of the 1st series |
Alternative drug |
Primary lobe pneumonia |
Pneumococcus |
Penicillin |
Erythromycin and other macrolides, azithromycin, cephaloslorins |
Primary atypical pneumonia |
Mycoplasma, legionella, chlamydia |
Erythromycin, semisynthetic macrolides, erythromycin |
Fluoroquinolones |
Pneumonia in the background of chronic bronchitis |
Hemophilus rods, streptococci |
Ampicillin, macrolides, erythromycin |
Leaomycetin, fluoroquinolones, cephaloslorins |
Pneumonia on the background of influenza |
Staphylococcus, pneumococcus, hemophilic rods |
Ampioks, penicillins with beta-lactamase inhibitors |
Fluoroquinolones, cephaloslorins |
Pneumonia aspiration |
Enterobacteria, anaerobes |
Aminoglycosides + metronidazole |
Cephaloslorins, fluoroquinolones |
Pneumonia on the background of artificial ventilation |
Enterobacteria, Pseudomonas aeruginosa |
Aminoglycosides |
Imipenem |
Pneumonia in persons with immunodeficiency states |
Enterobacteria, staphylococcus, caprofits |
Penicillins with beta-lactamase inhibitors, ampiox, aminoglycosides |
Cephaloslorins, fluoroquinolones |
Features of antibiotic therapy of atypical and intrahospital (nosocomial) pneumonia
Atypical pneumonia is called pneumonia caused by mycoplasma, chlamydia, legionella, and characterized by certain clinical manifestations, differing from the typical out-of-hospital pneumonia. Legionella causes pneumonia in 6.4%, chlamydia - in 6.1% and mycoplasma - in 2% of cases. A feature of atypical pneumonia is the intracellular location of the causative agent of the disease. In this regard, for the treatment of "atypical" pneumonia should be used such antibacterial drugs, which penetrate well into the cell and create high concentrations there. These are macrolides (erythromycin and new macrolides, in particular, azithromycin, roxithromycin, etc.), tetracyclines, rifampicin, and fluoroquinolones.
Intrahospital nosocomial pneumonia is a pneumonia developing in a hospital, provided that in During the first two days of hospitalization, there were no clinical and radiological signs pneumonia.
Intrahospital pneumonia differs from out-of-hospital pneumonia in that it is more often caused by gram-negative flora: Pseudomonas aeruginosa, hemophilic daddy, legionella, mycoplasmas, chlamydia, flow more heavily and more often give death.
About half of all cases of nosocomial pneumonia develops in intensive care units, in postoperative departments. Intubation with mechanical ventilation of the lungs increases the incidence of intra-hospital infection by 10-12 times. In this case, 50% of patients who are on ventilator are allocated pseudomonas, 30% - acinetobacter, 25% - klebsiela. Less often, the pathogens of nosocomial pneumonia are E. coli, Staphylococcus aureus, serratus, and tsitrobacter.
Hospital aspiration also includes aspiration pneumonia. They are most often found in alcoholics, in people with impaired cerebral circulation, with poisoning, chest injuries. Aspiration pneumonia is almost always due to gram-negative flora and anaerobes.
Nosocomial pneumonia is treated with broad-spectrum antibiotics (third generation cephalosporins, ureidopenicillins, monobactams, aminoglycosides), fluoroquinolones. In the severe course of nosocomial pneumonia, the combination of aminoglycosides with cephalosporins of the third generation or monobactams (aztreonam) is considered to be the 1 st line. In the absence of effect, the drugs of the second series are used - fluoroquinolones, it is also effective by imipynem.
ilive.com.ua
Antibiotics for pneumonia - which medications are effective. Treatment of pneumonia in adults and children with antibiotics.
Inflammation begins immediately with pain in the chest with breathing, a strong cough with sputum, a fever. The disease urgently requires hospitalization. The patient is shown bed rest, a special vitamin nutrition, and the main component of the therapeutic process is the treatment with antibiotics.
What is pneumonia?
Inflammation of the lungs in people called pneumonia. It is an infection of the lower respiratory tract with an incubation period of 2 to 10 days, in which pulmonary tissues are involved. There are several types of disease:
- Atypical. Called chlamydia, legionella, mycoplasmas, that is, an atypical microflora.
- Aspiration. It arises from the ingress of water, food or foreign objects into the respiratory tract.
- Hospital. The disease develops while the patient is in the hospital.
- Community-acquired. Occurs as a complication after a viral infection. Often is the cause of mortality due to a strong decrease in immunity.
New generation antibiotics help to avoid the complication of pneumonia, in which lung abscess, empyema of the pleura, pneumothorax and other serious diseases can develop. The most serious consequence of pneumonia is respiratory failure. This pathology develops in patients with other chronic diseases or in elderly patients who do not receive adequate antibiotic treatment. Often, failure leads to death.
Antibiotics for pneumonia
Given the acute course of the disease, broad-spectrum antibacterial drugs are prescribed without waiting for laboratory tests. Doctors distinguish three degrees of severity of inflammation of the lungs. At the mildest stage, the organism becomes intoxicated (weakly expressed), the patient's body temperature does not exceed 38 ° C, the heart beats in a normal rhythm. Consciousness of the patient remains clear, and with the X-ray study, a small focus of inflammation is seen localizing in the upper lobe of the lung.
At a severe stage, the body temperature immediately increases to 39 ° C, tachycardia (moderate), intoxication, on X-ray pronounced infiltration. The heaviest degree of pneumonia (pleuropneumonia) is characterized by a body temperature of 40 ° C, the patient raves, suffers from shortness of breath, intoxication is pronounced. Prescribe antibiotics for pneumonia, given the following factors:
- stage and severity of the disease;
- toxicity of drugs;
- contraindications;
- a possible manifestation of allergy;
- spectrum of antibiotic action;
- speed of penetration into the body of the medicine;
- the rate of development of bacterial resistance to this drug.
Penicillins
The first antibacterial drugs that quickly penetrate into tissues and liquids, so they are used for congestive pneumonia. If the causative agent of inflammation are staphylococci or streptococci, then treatment with drugs of this type is effective. When pathology occurs for a different reason, then other antibiotics are prescribed. Penicillins are administered orally (tablets, suspensions) and through injections (injections). Penicillins include:
- Amoxicillin;
- Mesocillin;
- Flemoxin.
Tetracyclines
A group of drugs used in the treatment of pneumonia is becoming less common. Their instability to the action of microorganisms and the ability to accumulate in tissues is the cause. Tetracyclines have many contraindications: pregnancy, lactation, age under 7 years, kidney disease. Famous representatives of this group of antibiotics:
- Tetracycline;
- Doxycycline.
Cephalosporins
Actively act on all the bacteria of the cocci group, have excellent antibacterial properties to gram-negative and gram-positive flora, affect microorganisms that are resistant to drugs penicillin group. Among the adverse reactions, allergy is evident. Intravenous or intramuscular route of administration is used. The antibiotics of this group include drugs:
- Ceftriaxone;
- Cefonucid;
- Ceftithoxime.
Macrolides
This group of antibiotics for pneumonia is used to neutralize chlamydia, legionella, cocci. Macrolides are well absorbed, but food can slow down the process. Side effects and allergic manifestations are extremely rare. Contraindications include liver disease in patients. Representatives of this category of drugs:
- Sumamed;
- Erythromycin;
- Clarithromycin.
Aminoglycosides
They act on gram-negative aerobic microorganisms. They are used when the inflammation of the lungs is caused by several kinds of bacteria, so therapy is prescribed together with antibacterial or antiviral drugs. For example, the action of antibiotic Amikatsina in atypical pneumonia will strengthen antibacterial Metronidazole. When joint admission should be observed at the rate of glomerular filtration in the kidneys (excretory capacity). Representatives of the group are:
- Gentamicin;
- Iepamycin;
- Neomycin.
Fluoroquinols
Medicines actively affect the E. coli, Legionella. To date, fluoroquinolones are one of the leading places in the treatment of bacterial pneumonia. These are broad-spectrum drugs with the ability to penetrate deeply into tissues. Resistance of microorganisms to fluoroquinols rarely develops due to structural changes in DNA and permeability of the bacterial wall. Known antibiotics of this group:
- Ofloxacin;
- Pefloxacin;
- Chlamploploxacin.
How to treat pneumonia with antibiotics
What to take antibacterial drugs solves only the doctor. Self-treatment of pneumonia in the home can lead to death. Antibiotic therapy is conducted no more than 10 days, since many drugs are toxic. With bilateral pneumonia, treatment can be prolonged for a longer period. The specialist takes into account the general condition of the patient, his age and the dosage form of the drug. You need this dosage of antibiotic in the blood so that it is effective at a given degree of the disease.
In adults
After 18 years of age, antibiotics are prescribed for pneumonia in a dosage calculated individually. An adult doctor can prescribe the use of both a single drug and antibacterial agents in several groups. Most drugs are used in ampoules, because some modern drugs, for example, Ceftriaxone, are not available in tablets. In addition, experts argue that antibiotics are more effective if they are stabbed, not consumed.
If there is no therapeutic effect after 3 days, the doctor should replace the medicine with another group of antibiotics. It is often not recommended to change preparations too, so as not to develop the resistance of microorganisms to them. When the cause of inflammation is the virus, then immunomodulators are additionally prescribed:
- Grogrinosine;
- Amiksin;
- Arbidol.
Children
Especially dangerous is the child's pneumonia, because it arises hidden after the transferred ARVI, and not as an independent disease. The child becomes sluggish, loses appetite, there are coughing, wheezing, high fever. The basis of children's therapy, too, are antibiotics, which are administered parenterally. Kids are prescribed natural and semi-synthetic penicillins or macrolides, in which the duration of treatment lasts no more than 5 days. Pre-pediatricians make a test for sensitivity to a child's prescribed antibiotic.
Video: Treatment of pneumonia with antibiotics
sovets.net
What antibiotics are prescribed for pneumonia?
Antibiotics - this is a group of drugs, which you have to face in this or that case, almost every person. Despite the fact that these drugs are considered serious, unfortunately, it is impossible to do without them, in particular, in the treatment of pneumonia. Which antibiotics for pneumonia are used especially often and why they are the most effective means to combat this disease, we will discuss in the article.
What factors influence the choice of a particular medication for pneumonia?
In medicine, pneumonia refers to a group of severe and life-threatening ailments. The causative agents of this disease can be both viruses and fungi. But most often the disease is caused by infection with bacteria - pneumococci, streptococci, staphylococci, etc. The area of the lung at the same time stops functioning normally, causing many severe consequences for the body.
Not so long ago, the main antibiotics for fighting pneumonia were easy to identify, since this ailment was treated only with penicillin drugs. But, as it turned out, bacteria are able to develop resistance to drugs. Now these antibiotics may not be so effective, researchers had to develop new drugs. Nowadays, a huge number of them appeared, which is good, and at the same time it is difficult for the doctor, since now he has to take into account a lot of factors in order to find an adequate treatment.
What antibiotics for pneumonia will be prescribed, now depends on many factors: not only the form disease, but also its causes, the susceptibility of the body to this drug, as well as what preparations of this group have already been used by patients earlier.
How is the treatment prescribed for pneumonia?
In order to make the diagnosis as accurate as possible, the composition of the sputum of the patient determines the laboratory type of bacteria that triggered the disease. In the analysis of the analysis, as a rule, the pharmacological group is indicated, and among its preparations the doctor selects the one that has the least contraindications and side effects. This is mainly about the following groups of antibiotics:
- cephalosporins (Aksetin, Supraks, Cefixim, Zinat, etc.);
- fluoroquinolones ("Levofloxacin "Avelox "Moximak "Moxifloxacin etc.);
- macrolides ("Azithromycin "Chemomycetin "Sumamed etc.),
- group of tetracyclines (Doxycycline, Tetracycline, Oxytetracycline Hydrochloride, etc.).
Each of them contains active substances that allow the specialist to choose the most precisely what to treat pneumonia. Antibiotics are selected on the basis of a specific case, and in order to expand the scope of drugs, it is often necessary to designate funds from two groups at once.
The use of antibiotics depending on the pathogen
It is not so difficult to guess that each of the listed series best copes with certain types of pathogens of pneumonia. Thus, macrolides act best on the activity of pneumococci, which provoked pneumonia. Treatment with antibiotics from the group of fluoroquinolones in this case is ineffective, and to the preparations of the tetracycline series, these microorganisms are practically insensitive.
For the hemophilic rod, the most active drugs are fluoroquinolones, and if the disease is caused by enterobacteria - drugs from the group of third-generation cephalosporins. In the treatment of mycoplasmal or chlamydial pneumonia, as a rule, macrolides and antibiotics from the tetracycline group are chosen.
What antibiotics are used most often
Of course, in medical practice, there are antibiotics, with pneumonia the doctors are most popular. So, if the patient has not reached the age of 60, he does not have diabetes or pathologies of the cardiovascular system, then for the treatment of segmental or focal pneumonia specialists prefer the well-proven drugs "Avelox" and "Tavanik" (which, by the way, is preferable to its cheaper analogue "Loksof" or "Levofloxacin"). If they are taken in combination with the tablets "Amoxiclav" or "Augmentin then a positive effect can be achieved within two weeks after the beginning of the reception.
If the patient's condition does not improve and the temperature does not drop even on the fourth day, then other antibiotics should be selected against pneumonia. As a rule, in such cases, drugs "Azitro-Sandoz" or "Sumamed" instead of "Augmentin" are prescribed.
A good combination is also the use of "Sumamed" tablets (1 table. 1 time per day) in combination with intramuscular or intravenous injections of Fortum (2 mg 2 times a day).
Popular injections: antibiotics for pneumonia
The course of antibiotic injection for pneumonia usually takes seven to ten days. But in no case this treatment can not be carried out independently, without the appointment and supervision of a doctor, or to interrupt the prescribed course, having decided that the state of health has already improved. All this in the end will provoke the resistance of the surviving bacteria to the drugs, and the untreated or returned pathology will be more complicated, and it will be worse to treat.
Most often in the form of injections, the following antibiotics are used for pneumonia:
- "Ceftriaxone" (it is injected every 12 hours, diluting previously in a solution of novocaine).
- "Amoxicillin" in combination with the drug "Sulbaktam" (3 r. in a day).
- "Azithromycin" is administered intravenously. This is done slowly, drip, because this drug can not be injected intramuscularly.
By the way, it should be noted that with the appointment of antibiotics, there are several features. So, the conclusion that you need to replace this drug, you can do it only 2-3 days after the start of treatment. The reason for this decision may be the risk of serious side effects or excessive toxicity of any antibiotic that will not allow them to take them for a long time.
Basic rules for injection from pneumonia
Effective antibiotics for pneumonia can be selected only by a doctor. But if the patient is shown out-patient treatment, then someone will have to inject him. In this case, in order not to cause unnecessary complications, several rules should be observed.
- Remember that the course of antibiotic treatment for pneumonia can not be less than 10 days.
- When prescribing drugs for injection, which are available in the form of powders, remember: they can only be diluted immediately before the procedure. Do not do this in advance!
- To dilute antibiotics use saline, novocaine, lidocaine or water for injection. They are taken in the standard proportion: 1 g of the drug - 1 ml of liquid.
- Before the first injection, make a skin test. To do this, scratch with a sterile disposable needle from the syringe skin and apply a few drops of the prescribed remedy on the wound. If after 15 minutes she did not blush and began to itch, then there is no allergy to this medicine. Otherwise, it must be replaced.
- If after the injections remains a painful infiltration - it is applied to the iodine grid to accelerate resorption.
What antibiotics are considered to be reserve
In the case of severe pneumonia, the patient is assigned the so-called reserve drugs. That is, potent antibiotics, which are "left" by doctors for an extreme case (all this is done because of the easily developed resistance of bacteria to drugs).
Therefore, it is worth remembering their name. Antibiotics for pneumonia with severe course are "Ceftazidime "Timentine "Sparfloxacin "Tientam "Grimipenem". They are not prescribed in the case of mild or moderate severity of the disease, because no one is insured in the future from surgical interventions and similar health problems, when their application will be especially necessary.
What antibiotics should not be used
In view of the previously mentioned high resistance to drugs of microorganisms that caused pneumonia, treatment with antibiotics listed below will not give the desired effect. To such means carry:
- simple penicillins ("Bicellin "Ampicillin "Oxacillin etc.),
- cephalosporins of the first and second generation ("Cefazolin "Cefalexin "Cefamizin"),
- fluoroquinolones of the first and second generation ("Nalidixic acid "Norfloxacin "Ofloxacin" and "Ciprofloxacin").
Do not prescribe antibacterial therapy!
Finally, I want to emphasize that self-administration of antibiotics is very dangerous, but not only because they can cause serious side effects.
Regardless of what antibiotics are treated for pneumonia, microorganisms very quickly develop drug resistance to them. So, every new case, which will have to take these drugs, threatens that the expected action will not happen. This, of course, will prolong the course of the disease and cause various difficulties. Therefore, in order not to put yourself in the future in a difficult situation, do not engage in self-medication. And be healthy!
fb.ru
Antibiotics for bronchitis
The thunderstorm of the autumn-spring period is bronchitis. Often it begins with a common cold and other respiratory diseases - sore throat or sinusitis. How to treat bronchitis correctly, only the doctor will say. Many people avoid using strong medicines and are treated with folk remedies. Often this is the reason for the transition of manifestations of bronchitis in the chronic course of the disease. Antibiotics for bronchitis should not be taken alone - be sure to contact your doctor.
Scheme of treatment of bronchitis and pneumonia with antibiotics
Treatment of inflammation of the respiratory tract is carried out in a hospital or outpatient. Light bronchitis is successfully eliminated at home, chronic or acute manifestations require hospitalization. Bronchitis and pneumonia are insidious diseases, so do not self-medicate. For adults and children, doctors prescribe different antibiotics and apply different healing procedures. Thus, antibiotics for bronchitis and the treatment regimen depend on:
- age;
- having a tendency to allergies;
- the nature of the disease (acute, chronic);
- type of pathogen;
- parameters of the drugs used (speed and spectrum of action, toxicity).
Antibiotics powerfully affect the human body, and their thoughtless use can harm, not help. For example, the use of strong drugs in the prevention of bronchitis can have the opposite effect. The constant intake of antibiotics inhibits immunity, promotes the emergence of dysbiosis, adaptation of strains of the disease to the drugs used. Therefore, it can not be said that antibiotics are the best remedy for bronchitis. Treatment of obstructive bronchitis with antibiotics is prescribed in the case of:
- if there is a high temperature (more than 38 degrees), which lasts longer than 3 days;
- purulent sputum;
- protracted nature of the disease - treatment for longer than a month does not bring recovery.
- manifesting severe symptoms during exacerbation.
- if the analysis of sputum revealed pathogens, bacterial or atypical nature.
In adults
What antibiotics to drink in adults with bronchitis? A specific treatment regimen is used based on the severity of the disease, its course and the age of the patient. With bronchitis of acute type, drugs of penicillin group are prescribed - Amoxicillin, Erythromycin. With chronic it is possible to use Amoxiclav, Augmentin. If this group of drugs does not help, they switch to the use of Rovamycin, Sumamed and others.
For the elderly, Flemoxin, Azithromycin, Suprax, Ceftriaxone are prescribed. If sputum analysis was not performed, then a wide range of antibiotics are preferred: Ampicillin, Streptocillin, Tetracycin, etc. After the analysis, the doctor prescribes directed drugs. The decision on what antibiotics to take when bronchitis in adults is taken by the attending physician. In any case, the following treatment principles should be adhered to:
- Drugs are taken strictly according to the instructions (dosage, schedule) at regular intervals.
- It is unacceptable to skip the reception of tablets.
- If the symptoms of bronchitis have disappeared - you can not arbitrarily stop treatment.
Children
Unlike adults, the treatment of bronchitis in children with antibiotics is extremely undesirable and dangerous. It is allowed to use drugs only if there is a suspicion of an infectious type of disease. Children should take penicillin group drugs. For children with asthma, the use of azithromycin, erythromycin is allowed. In the rest the treatment scheme of the child is standard and is aimed at eliminating symptoms. Assign:
- bed rest, child care;
- drugs to reduce temperature;
- means for eliminating cough and sore throat;
- application of traditional medicine.
Groups of antibacterials of new generation
Penicillins (oxacillin, ampicillin, ticarcillin, piperacillin). The group of drugs includes such as "Amoxiclav "Augmentin "Panklav etc. They have a bactericidal effect, they affect the formation of the protein wall of a harmful bacterium, as a result of which it dies. Preparations with it are considered the safest. The only negative is the ability to excite allergic reactions. If the disease is started and the drugs with penicillin do not have the proper effect, then they switch to strong drugs.
Macrolides. An extensive group of drugs, which include erythromycin, oleandomycin, midecamycin, dirithromycin, telithromycin, roxithromycin, clarithromycin. The brightest representatives of macrolides on the pharmacological market are preparations "Erythromycin "Claricin "Sumamed". The mechanism of action is directed to the disturbance of the vital activity of the microbial cell. In terms of safety, macrolides are less harmful than tetracyclines, fluoroquinols, more dangerous than penicillins, but they are good for people who are allergic. In combination with penicillins reduce their effectiveness.
Fluoroquinolones (pefloxacin, lomefloxacin, sparfloxacin, hemifloxacin, moxifloxacin). On the market, the drugs are presented by "Afelox "Afenoxin and medications that are of the same name with the main active substance, for example, "Moxifloxacin". This group is used as a medicine for bronchitis. It is prescribed only if the previous two groups of antibiotics did not affect the causative agent of the disease.
Cephalosporins (active substances - cephalexin, cefaclor, cefoperazone, cefepime). According to the type of pathogen, the patient is prescribed "Cefalexin "Cefuroxime axetil "Cefotaxime". Limited to the effect on some pathogens. For example, such antibiotics absolutely do not affect pneumococci, chlamydia, microplasmas, listeria. Preparations of the first generation are practically not absorbed into the blood, and therefore are administered in the form of injections.
Which antibiotics are the most effective?
Amoxicillin. Form release - capsules and granules. Adults take 500 mg (1-2 capsules) 3 times a day, if the bronchitis in severe form is doubled to 1000 mg. The child is prescribed from 100 to 250 mg per day, depending on the age. To facilitate admission for children, a suspension is prepared - in half a glass of water, the antibiotic is diluted and shaken. The method of intake is only oral, by injection the drug is not administered.
Sumamed. It is used for bronchitis and pneumonia. It is not used by patients with liver and kidney dysfunction. Produced by tablets, capsules, powder for suspensions. Dosage for adults - 500 mg per day, course 3-5 days. Children dose determined by weight - 5-30 mg of medicine per 1 kg. More accurate and correct dosage will be told only by a specialist, do not neglect medical opinion.
Levofloxacin and Moxifloxacin. They are positioned as antibiotics for chronic bronchitis in adults (over 18 years of age). Highly effective in pneumonia, sinusitis, pyelonephritis, infections of various etiologies. The use of this antibiotic is accompanied by a plentiful drink. Avoid direct contact with ultraviolet light of any origin. The form of release - tablets. Dosage - 1-2 times a day for 500 mg.
Cefazolin. Produced by powder for the preparation of infusions and injections. Methods of administration - only intravenously and intramuscularly. For adults, 3-4 injections per day on, 5-1 g. Therapeutic course - 7-10 days. The child's dose is determined proportionally to the weight of the child - 25-50 mg per 1 kg. Stabbing - 3-4 times a day. If patients have renal dysfunction, dosage adjustment is performed.
Side effects
Antibiotics because of their nature have an extensive list of side effects. From the gastrointestinal tract - is diarrhea, vomiting, dysbiosis, constipation, abdominal pain, dyspepsia, flatulence, dry mouth. From the urogenital organs - itching, impotence, kidney failure, blood in the urine. On the part of the locomotor system - dizziness, arthritis, muscle weakness, numbness of the limbs, paralysis. Skin reactions are hives, itching, allergic reactions.
sovets.net